- 1.
Ou, X.; Hu, Y.; Li, X.; et al. Advancements and Challenges in Rill Formation, Morphology, Measurement and Modeling. Catena 2021, 196, 104932.
- 2.
Peng, W.; Zhang, Z.; Zhang, K. Hydrodynamic Characteristics of Rill Flow on Steep Slopes. Hydrol. Process. 2015, 29, 3677–3686.
- 3.
Gatto, L.W. Soil Freeze–Thaw-Induced Changes to a Simulated Rill: Potential Impacts on Soil Erosion. Geomorphology 2000, 32, 147–160.
- 4.
Zhang, P.; Tang, H.; Yao, W.; et al. Rill Morphology Evolution and Runoff and Sediment Yielding Processes. Adv. Water Sci. 2016, 27, 535–541.
- 5.
Zhang, Q.; Wang, Z.; Wang, X.; et al. Relationship among Runoff, Soil Erosion, and Rill Morphology on Slopes of Overburdened Stockpiles under Simulated Rainfall. J. Hydrol. 2024, 633, 130991.
- 6.
Govers, G.; Giménez, R.; Van Oost, K. Rill Erosion: Exploring the Relationship between Experiments, Modelling and Field Observations. Earth-Sci. Rev. 2007, 84, 87–102.
- 7.
Knapen, A.; Poesen, J.; Govers, G.; et al. Resistance of Soils to Concentrated Flow Erosion: A Review. Earth-Sci. Rev. 2007, 80, 75–109.
- 8.
Angulo-Martínez, M.; Beguería, S.; Navas, A.; et al. Splash Erosion under Natural Rainfall on Three Soil Types in NE Spain. Geomorphology 2012, 175, 38–44.
- 9.
Zhang, P.; Yao, W.; Tang, H.; et al. Laboratory Investigations of Rill Dynamics on Soils of the Loess Plateau of China. Geomorphology 2017, 293, 201–210.
- 10.
Kimaro, D.N.; Poesen, J.; Msanya, B.M.; et al. Magnitude of Soil Erosion on the Northern Slope of the Uluguru Mountains, Tanzania: Interrill and Rill Erosion. Catena 2008, 75, 38–44.
- 11.
Owoputi, L.O.; Stolte, W.J. Soil Detachment in the Physically Based Soil Erosion Process: A Review. Trans. ASAE 1995, 38, 1099–1110.
- 12.
Wang, B.; Zhang, G.-H.; Shi, Y.-Y.; et al. Soil Detachment by Overland Flow under Different Vegetation Restoration Models in the Loess Plateau of China. Catena 2014, 116, 51–59.
- 13.
Guo, M.; Yang, B.; Wang, W.; et al. Distribution, Morphology and Influencing Factors of Rills under Extreme Rainfall Conditions in Main Land Uses on the Loess Plateau of China. Geomorphology 2019, 345, 106847.
- 14.
Li, Z.; Fang, H. Impacts of Climate Change on Water Erosion: A Review. Earth-Sci. Rev. 2016, 163, 94–117.
- 15.
Poesen, J. Soil Erosion in the Anthropocene: Research Needs. Earth Surf. Process. Landf. 2018, 43, 64–84.
- 16.
Chang, E.; Li, P.; Li, Z.; et al. The Impact of Vegetation Successional Status on Slope Runoff Erosion in the Loess Plateau of China. Water 2019, 11, 2614.
- 17.
Han, Y.; Zhao, W.; Ding, J.; et al. Soil Erodibility for Water and Wind Erosion and Its Relationship to Vegetation and Soil Properties in China’s Drylands. Sci. Total Environ. 2023, 903, 166639.
- 18.
Adnan, S.; Aldefae, A.H.; Humaish, W.H. Soil Erosion and the Influenced Factors: A Review Article. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1058, 012041.
- 19.
Bryan, R.B. Soil Erodibility and Processes of Water Erosion on Hillslope. Geomorphology 2000, 32, 385–415.
- 20.
Bazzoffi, P. Soil Erosion Tolerance and Water Runoff Control: Minimum Environmental Standards. Reg. Environ. Chang. 2009, 9, 169–179.
- 21.
Wischmeier, W.H. Predicting Rainfall Erosion Losses. In USDA Agricultural Research Service Handbook; USDA: Washington, DC, USA, 1978.
- 22.
Pierce, F.J.; Larson, W.E.; Dowdy, R.H. Soil Loss Tolerance: Maintenance of Long-Term Soil Productivity. J. Soil Water Conserv. 1984, 39, 136–138.
- 23.
Di Stefano, C.; Ferro, V. Establishing Soil Loss Tolerance: An Overview. J. Agric. Eng. 2016, 47, 127–133.
- 24.
Di Stefano, C.; Nicosia, A.; Pampalone, V.; et al. Soil Loss Tolerance in the Context of the European Green Deal. Heliyon 2023, 9, e12869.
- 25.
Sun, L.; Fang, H.; Qi, D.; et al. A Review on Rill Erosion Process and Its Influencing Factors. Chin. Geogr. Sci. 2013, 23, 389–402.
- 26.
Wu, L.; Jiang, J.; Li, G.; et al. Characteristics of Pulsed Runoff-Erosion Events under Typical Rainstorms in a Small Watershed on the Loess Plateau of China. Sci. Rep. 2018, 8, 3672.
- 27.
Di Stefano, C.; Nicosia, A.; Palmeri, V.; et al. Rill Flow Velocity and Resistance Law: A Review. Earth-Sci. Rev. 2022, 231, 104092.
- 28.
Zhang, G.; Liu, Y.; Han, Y.; et al. Sediment Transport and Soil Detachment on Steep Slopes: I. Transport Capacity Estimation. Soil Sci. Soc. Am. J. 2009, 73, 1291–1297.
- 29.
Wu, B.; Wang, Z.; Shen, N.; et al. Modelling Sediment Transport Capacity of Rill Flow for Loess Sediments on Steep Slopes. Catena 2016, 147, 453–462.
- 30.
Liu, R.; Thomas, B.W.; Shi, X.; et al. Effects of Ground Cover Management on Improving Water and Soil Conservation in Tree Crop Systems: A Meta-Analysis. Catena 2021, 199, 105085.
- 31.
Ma, Y.; Liu, Y.; Rodrigo-Comino, J.; et al. Mixed-Cultivation Grasslands Enhance Runoff Generation and Reduce Soil Loss in the Restoration of Degraded Alpine Hillsides. Hydrol. Earth Syst. Sci. 2024, 28, 3947–3961.
- 32.
Abrahams, A.D.; Parsons, A.J.; Luk, S.-H. Field Measurement of the Velocity of Overland Flow Using Dye Tracing. Earth Surf. Process. Landf. 1986, 11, 653–657.
- 33.
Chow, V.T. Handbook of Applied Hydrology; McGraw-Hill: New York, NY, USA, 1964.
- 34.
Nearing, M.A.; Bradford, J.M.; Parker, S.C. Soil Detachment by Shallow Flow at Low Slopes. Soil Sci. Soc. Am. J. 1991, 55, 339–344.
- 35.
Govers, G. Selectivity and Transport Capacity of Thin Flows in Relation to Rill Erosion. Catena 1985, 12, 35–49.
- 36.
Bagnold, R.A. An Approach to the Sediment Transport Problem from General Physics; US Government Printing Office: Washington, DC, USA, 1966.
- 37.
Yang, C.T. Unit Stream Power and Sediment Transport. J. Hydraul. Div. 1972, 98, 1805–1826.
- 38.
Hewlett, J.D. Principles of Forest Hydrology; University of Georgia Press: Athens, GA, USA, 1982.
- 39.
Khan, M.N.; Mohammad, F. Eutrophication: Challenges and Solutions. In Eutrophication: Causes, Consequences and Control; Springer: Berlin/Heidelberg, Germany, 2013; Volume 2, pp. 1–15.
- 40.
Inácio, M.; Baltranaitė, E.; Bogdzevič, K.; et al. Mapping and Assessing the Future Provision of Lake Ecosystem Services in Lithuania. J. Environ. Manag. 2024, 372, 123349.
- 41.
Tudi, M.; Daniel Ruan, H.; Wang, L.; et al. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public. Health 2021, 18, 1112.
- 42.
Boxall, A.B.; Rudd, M.A.; Brooks, B.W.; et al. Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions? Environ. Health Perspect. 2012, 120, 1221–1229.
- 43.
da Silva, B.F.; Jelic, A.; López-Serna, R.; et al. Occurrence and Distribution of Pharmaceuticals in Surface Water, Suspended Solids and Sediments of the Ebro River Basin, Spain. Chemosphere 2011, 85, 1331–1339.
- 44.
Prats, S.A.; MacDonald, L.H.; Monteiro, M.; et al. Effectiveness of Forest Residue Mulching in Reducing Post-Fire Runoff and Erosion in a Pine and a Eucalypt Plantation in North-Central Portugal. Geoderma 2012, 191, 115–124.
- 45.
Vieira, D.C.S.; Serpa, D.; Nunes, J.P.C.; et al. Predicting the Effectiveness of Different Mulching Techniques in Reducing Post-Fire Runoff and Erosion at Plot Scale with the RUSLE, MMF and PESERA Models. Environ. Res. 2018, 165, 365–378.
- 46.
Dahanayake, A.C.; Webb, J.A.; Greet, J.; et al. How Do Plants Reduce Erosion? An Eco Evidence Assessment. Plant Ecol. 2024, 225, 593–604.
- 47.
Apollonio, C.; Petroselli, A.; Tauro, F.; et al. Hillslope Erosion Mitigation: An Experimental Proof of a Nature-Based Solution. Sustainability 2021, 13, 6058.
- 48.
Babu, S.; Singh, R.; Avasthe, R.; et al. Conservation Tillage and Diversified Cropping Enhance System Productivity and Eco-Efficiency and Reduce Greenhouse Gas Intensity in Organic Farming. Front. Sustain. Food Syst. 2023, 7, 1114617.
- 49.
Sadiq, M.; Rahim, N.; Tahir, M.M.; et al. Conservation Tillage: A Way to Improve Yield and Soil Properties and Decrease Global Warming Potential in Spring Wheat Agroecosystems. Front. Microbiol. 2024, 15, 1356426.
- 50.
Meng, X.; Meng, F.; Chen, P.; et al. A Meta-Analysis of Conservation Tillage Management Effects on Soil Organic Carbon Sequestration and Soil Greenhouse Gas Flux. Sci. Total Environ. 2024, 954, 176315.
- 51.
Szostek, M.; Szpunar-Krok, E.; Pawlak, R.; et al. Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity. Agronomy 2022, 12, 208.
- 52.
Wang, W.; Lei, A.; Li, Z; et al. Study on Dynamic Mechanism of Rills, Shallow Furrows and Gully in the Soil Erosion Chain. Adv. Water Sci. 2003, 14, 471–475.
- 53.
Maetens, W.; Poesen, J.; Vanmaercke, M. How Effective Are Soil Conservation Techniques in Reducing Plot Runoff and Soil Loss in Europe and the Mediterranean? Earth-Sci. Rev. 2012, 115, 21–36.
- 54.
Parhizkar, M.; Lucas-Borja, M.E.; Zema, D.A. Changes in Rill Detachment Capacity after Deforestation and Soil Conservation Practices in Forestlands of Northern Iran. Catena 2024, 246, 108405.
- 55.
Fan, D.; Jia, G.; Wang, Y.; et al. The Effectiveness of Mulching Practices on Water Erosion Control: A Global Meta-Analysis. Geoderma 2023, 438, 116643.
- 56.
Li, G.; Liu, C.; Zhao, H.; et al. Runoff and Sediment Simulation of Terraces and Check Dams Based on Underlying Surface Conditions. Appl. Water Sci. 2023, 13, 22.
- 57.
Mgolozeli, S.; Nciizah, A.D.; Wakindiki, I.I.; et al. Innovative Pro-Smallholder Farmers’ Permanent Mulch for Better Soil Quality and Food Security under Conservation Agriculture. Agronomy 2020, 10, 605.
- 58.
Rajbanshi, J.; Das, S.; Paul, R. Quantification of the Effects of Conservation Practices on Surface Runoff and Soil Erosion in Croplands and Their Trade-off: A Meta-Analysis. Sci. Total Environ. 2023, 864, 161015.
- 59.
De la Rosa, J.M.; Campos, P.; Diaz-Espejo, A. Soil Biochar Application: Assessment of the Effects on Soil Water Properties, Plant Physiological Status, and Yield of Super-Intensive Olive Groves under Controlled Irrigation Conditions. Agronomy 2022, 12, 2321.
- 60.
Kebede, B.; Tsunekawa, A.; Haregeweyn, N.; et al. Effect of Polyacrylamide Integrated with Other Soil Amendments on Runoff and Soil Loss: Case Study from Northwest Ethiopia. Int. Soil Water Conserv. Res. 2022, 10, 487–496.
- 61.
Sadeghi, S.H.; Kheirfam, H.; Homaee, M.; et al. Improving Runoff Behavior Resulting from Direct Inoculation of Soil Micro-Organisms. Soil Tillage Res. 2017, 171, 35–41.
- 62.
Kheirfam, H.; Sadeghi, S.H.; Darki, B.Z. Soil Conservation in an Abandoned Agricultural Rain-Fed Land through Inoculation of Cyanobacteria. Catena 2020, 187, 104341.
- 63.
Amezketa, E. Soil Aggregate Stability: A Review. J. Sustain. Agric. 1999, 14, 83–151.
- 64.
Luna, L.; Vignozzi, N.; Miralles, I.; et al. Organic Amendments and Mulches Modify Soil Porosity and Infiltration in Semiarid Mine Soils. Land Degrad. Dev. 2018, 29, 1019–1030.
- 65.
de Almeida, W.S.; Panachuki, E.; de Oliveira, P.T.S.; et al. Effect of Soil Tillage and Vegetal Cover on Soil Water Infiltration. Soil Tillage Res. 2018, 175, 130–138.
- 66.
Zhang, G.; Tang, K.; Ren, Z.; et al. Impact of Grass Root Mass Density on Soil Detachment Capacity by Concentrated Flow on Steep Slopes. Trans. ASABE 2013, 56, 927–934.
- 67.
Li, Z.-W.; Zhang, G.-H.; Geng, R.; et al. Land Use Impacts on Soil Detachment Capacity by Overland Flow in the Loess Plateau, China. Catena 2015, 124, 9–17.
- 68.
Wang, B.; Zhang, G.-H.; Yang, Y.-F.; et al. Response of Soil Detachment Capacity to Plant Root and Soil Properties in Typical Grasslands on the Loess Plateau. Agric. Ecosyst. Environ. 2018, 266, 68–75.
- 69.
Robichaud, P.R.; Wagenbrenner, J.W.; Brown, R.E. Rill Erosion in Natural and Disturbed Forests: 1. Measurements. Water Resour. Res. 2010, 46. https://doi.org/10.1029/2009WR008314.
- 70.
Laflen, J.M.; Lane, L.J.; Foster, G.R. WEPP: A New Generation of Erosion Prediction Technology. J. Soil Water Conserv. 1991, 46, 34–38.
- 71.
Wagenbrenner, J.W.; Robichaud, P.R.; Elliot, W.J. Rill Erosion in Natural and Disturbed Forests: 2. Modeling Approaches. Water Resour. Res. 2010, 46. https://doi.org/10.1029/2009WR008315.
- 72.
Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; et al. The European Soil Erosion Model (EUROSEM): A Dynamic Approach for Predicting Sediment Transport from Fields and Small Catchments. Earth Surf. Process. Landf. J. Br. Geomorphol. Group 1998, 23, 527–544.
- 73.
Hairsine, P.B.; Rose, C.W. Modeling Water Erosion Due to Overland Flow Using Physical Principles: 1. Sheet Flow. Water Resour. Res. 1992, 28, 237–243.
- 74.
Favis-Mortlock, D.; Guerra, T.; Boardman, J. A self-organizing dynamic systems approach to hillslope rill initiation and growth: Model development and validation. In Modelling Soil Erosion, Sediment Transport and Closely Related Hydrological Processes; IAHS Publication: Wallingford, UK, 1998; pp. 53–62.
- 75.
Woolhiser, D.A.; Smith, R.E.; Goodrich, D.C. KINEROS: A Kinematic Runoff and Erosion Model: Documentation and User Manual; United States Department of Agriculture: Washington, DC, USA, 1990.
- 76.
Renard, K.G.; Foster, G.R.; Weesies, G.A.; et al. RUSLE: Revised Universal Soil Loss Equation. J. Soil Water Conserv. 1991, 46, 30–33.