- 1.
NOAA National Centers for Environmental Information (2025). Global Climate Report June 2025. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202506/2025-year-to-date-temperatures-versus-previous-years (accessed on 8 August 2025).
- 2.
Abbass, K.; Qasim, M.Z.; Song, H.; et al. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. https://doi.org/10.1007/s11356-022-19718-6.
- 3.
Chen, W.; Liu, L.; Liu, D.; et al. Droughts and windstorms due to climate change increase variability in species and trait composition of a subtropical monsoon evergreen broadleaf forest in China. For. Ecosyst. 2025, 12, 100253. https://doi.org/10.1016/j.fecs.2024.100253.
- 4.
Centre for Research on the Epidemiology of Disasters (CRED). 2024 Disasters in Numbers; CRED: Brussels, Belgium, 2024. Available online: https://files.emdat.be/reports/2024_EMDAT_report.pdf (accessed on 14 August 2025).
- 5.
Rocque, R.J.; Beaudoin, C.; Ndjaboue, R.; et al. Health effects of climate change: An overview of systematic reviews. BMJ Open 2021, 11, e046333. https://doi.org/10.1136/bmjopen-2020-046333.
- 6.
Franchini, M.; Mannucci, P.M. Impact on human health of climate changes. Eur. J. Intern. Med. 2014, 26, 1–5. https://doi.org/10.1016/j.ejim.2014.12.008.
- 7.
Watts, N.; Amann, M.; Arnell, N.; et al. The 2020 report of the Lancet Countdown on health and climate change: Responding to converging crises. Lancet 2021, 397, 129–170. https://doi.org/10.1016/S0140-6736(20)32290-X.
- 8.
World Meteorological Organization (WMO). Global Annual to Decadal Climate Update 2025–2029; WMO: Geneva, Switzerland, 2025. Available online: https://wmo.int/sites/default/files/2025-05/WMO_GADCU_2025-2029_Final.pdf (accessed on 14 August 2025).
- 9.
Available online: https://coast.noaa.gov/states/fast-facts/hurricane-costs.html (accessed on 14 August 2025).
- 10.
Available online: https://www.ncei.noaa.gov/access/billions/events/US/1980-2024/?disasters[]=tropical-cyclone (accessed on 14 August 2025).
- 11.
Young, R., Hsiang, S. Mortality caused by tropical cyclones in the United States. Nature 2024, 635, 121–128. https://doi.org/10.1038/s41586-024-07945-5.
- 12.
Available online: https://archive.cdc.gov/www_cdc_gov/niosh/topics/exposome/default (accessed on 14 August 2025).
- 13.
Vineis, P.; Robinson, O.; Chadeau-Hyam, M.; et al. What is new in the exposome? Environ. Int. 2020, 143, 105887. https://doi.org/10.1016/j.envint.2020.105887.
- 14.
Nabi, M.; Tabassum, N. Role of environmental toxicants on neurodegenerative disorders. Front. Toxicol. 2022, 4, 837579. https://doi.org/10.3389/ftox.2022.837579.
- 15.
Lefèvre-Arbogast, S.; Chaker, J.; Mercier, F.; et al. Assessing the contribution of the chemical exposome to neurodegenerative disease. Nat. Neurosci. 2024, 27, 812–821. https://doi.org/10.1038/s41593-024-01627-1.
- 16.
Huang, Y.; Li, Y.; Pan, H.; et al. Global, regional, and national burden of neurological disorders in 204 countries and territories worldwide. J. Glob. Health. 2023, 13, 04160. https://doi.org/10.7189/jogh.13.04160.
- 17.
Available online: https://www.alz.org/getmedia/ef8f48f9-ad36-48ea-87f9-b74034635c1e/alzheimers-facts-and-figures.pdf (accessed on 14 August 2025).
- 18.
Nguyen, T.A.; Pham, T.; Dang, T.H.; et al. Towards the development of Vietnam’s national dementia plan-the first step of action. Australas J. Ageing 2020, 39, 137–141. https://doi.org/10.1111/ajag.12755.
- 19.
Lee, J.; Meijer, E.; Langa, K.M.; et al. Prevalence of dementia in India: National and state estimates from a nationwide study. Alzheimer’s Dement. 2023, 19, 2898–2912. https://doi.org/10.1002/alz.12928.
- 20.
Gobler, C.J. Climate change and harmful algal blooms: Insights and perspective. Harmful Algae 2020, 91, 101731. https://doi.org/10.1016/j.hal.2019.101731.
- 21.
Moore, S.K.; Trainer, V.L.; Mantua, N.J.; et al. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ. Health 2008, 7, 1–12. https://doi.org/10.1186/1476-069X-7-S2-S4.
- 22.
Rogers, M.M.; Stanley, R.K. Airborne Algae: A Rising Public Health Risk. Environ. Sci. Technol. 2023, 57, 5501–5503. https://doi.org/10.1021/acs.est.3c01158.
- 23.
Sini, P.; Dang, T.B.C.; Fais, M.; et al. Cyanobacteria, Cyanotoxins, and Neurodegenerative Diseases: Dangerous Liaisons. Int. J. Mol. Sci. 2021, 22, 8726. https://doi.org/10.3390/ijms22168726.
- 24.
Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; et al. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. https://doi.org/10.1038/s41579-023-00900-7.
- 25.
Chen, X.; Shi, G.; Zhong, G.; et al. Triphenyltin inhibition of the proteasome activity and its influence on substrate protein levels in nerve cells. Chin. Sci. Bull. 2010, 55, 22–26. https://doi.org/10.1007/s11434-009-0678-1.
- 26.
Hu, D.; Shen, M.; Zhang, Y.; et al. Microplastics and nanoplastics: Would they affect global biodiversity change? Environ. Sci. Pollut. Res. 2019, 26, 19997–20002. https://doi.org/10.1007/s11356-019-05414-5.
- 27.
Shi, W.; Wu, N.; Zhang, Z.; et al. A global review on the abundance and threats of microplastics in soils to terrestrial ecosystem and human health. Sci. Tot. Environ. 2024, 912, 169469. https://doi.org/10.1016/j.scitotenv.2023.169469.
- 28.
Gou, X.; Fu, Y.; Li, J.; et al. Impact of nanoplastics on Alzheimer’s disease: Enhanced amyloid-β peptide aggregation and augmented neurotoxicity. J. Hazard. Mater. 2024, 465, 133518. https://doi.org/10.1016/j.jhazmat.2024.133518.
- 29.
Aráoz, R.; Molgó, J.; Tandeau de Marsac, N. Neurotoxic cyanobacterial toxins. Toxicon 2010, 56, 813–828. https://doi.org/10.1016/j.toxicon.2009.07.036.
- 30.
Rastogi, R.P.; Madamwar, D.; Incharoensakdi, A. Bloom dynamics of cyanobacteria and their toxins: Environmental health impacts and mitigation strategies. Front. Microbiol. 2015, 6, 1254. https://doi.org/10.3389/fmicb.2015.01254.
- 31.
Rodgers, K.J.; Main, B.J.; Samardzic, K. Cyanobacterial neurotoxins: Their occurrence and mechanisms of toxicity. Neurotox. Res. 2018, 33, 168–177. https://doi.org/10.1007/s12640-017-9757-2.
- 32.
Jonasson, S.; Eriksson, L.E.; Berntzon, L.; et al. A novel cyanobacterial toxin (BMAA) with potential neurodegenerative effects. Plant Biotechnol. 2008, 25, 227–232. https://doi.org/10.5511/plantbiotechnology.25.227.
- 33.
Torbick, N.; Hession, S.; Stommel, E.; et al. Mapping amyotrophic lateral sclerosis lake risk factors across northern New England. Int. J. Health Geogr. 2014, 13, 1. https://doi.org/10.1186/1476-072X-13-1.
- 34.
Hu, Y.; Chen, J.; Fan, H.; et al. A review of neurotoxicity of microcystins. Environ. Sci. Pollut. Res. 2016, 23, 7211–7219. https://doi.org/10.1007/s11356-016-6073-y.
- 35.
Mokoena, M.M. Microcystins in water containers used in the home: A review of their potential health effects. Ecotoxicol. Environ. Saf. 2024, 269, 115787. https://doi.org/10.1016/j.ecoenv.2023.115787.
- 36.
US EPA, Drinking Water Health Advisory for Microcystins-June 2015, Document EPA-820R15100. Available online: https://www.epa.gov/sites/default/files/2017-06/documents/microcystins-report-2015.pdf (accessed on 14 August 2025).
- 37.
Cyanobacterial Toxins: Microcystins. Background Document for Development of WHO Guidelines for Drinking-Water Quality and Guidelines for Safe Recreational Water Environments; World Health Organization: Geneva, Switzerland, 2020. (WHO/HEP/ECH/WSH/2020.6). Available online: https://iris.who.int/bitstream/handle/10665/338066/WHO-HEP-ECH-WSH-2020.6-eng.pdf (accessed on 14 August 2025).
- 38.
Yan, M.; Jin, H.; Pan, C.; et al. Movement disorder and neurotoxicity induced by chronic exposure to microcystin-LR in mice. Mol. Neurobiol. 2022, 59, 5516–5531. https://doi.org/10.1007/s12035-022-02919-y.
- 39.
Wang, J.; Chen, Y.; Zhang, C.; et al. Learning and memory deficits and alzheimer’s disease-like changes in mice after chronic exposure to microcystin-LR. J. Haz. Mater. 2019, 373, 504–518. https://doi.org/10.1016/j.jhazmat.2019.03.106.
- 40.
Wang, J.; Zhang, C.; Zhu, J.; et al. Blood-brain barrier disruption and inflammation reaction in mice after chronic exposure to Microcystin-LR. Sci. Total Environ. 2019, 689, 662–678. https://doi.org/10.1016/j.scitotenv.2019.06.387.
- 41.
Martin, R.M.; Bereman, M.S.; Marsden, K.C. BMAA and MCLR interact to modulate behavior and exacerbate molecular changes related to neurodegeneration in Larval Zebrafish. Toxicol. Sci. 2020, 179, 251. https://doi.org/10.1093/toxsci/kfaa178.
- 42.
Zhao, S.; Xu, J.; Zhang, W.; et al. Paternal exposure to microcystin-LR triggers developmental neurotoxicity in zebrafish offspring via an epigenetic mechanism involving MAPK pathway. Sci. Total Environ. 2021, 792, 148437. https://doi.org/10.1016/j.scitotenv.2021.148437.
- 43.
Zhao, S.; Yuan, C.; Tuo, X.; et al. MCLR induces dysregulation of calcium homeostasis and endoplasmic reticulum stress resulting in apoptosis in Sertoli cells. Chemosphere 2021, 263, 127868. https://doi.org/10.1016/j.chemosphere.2020.127868.
- 44.
Yan, M.; Wu, H.; Wu, T.; et al. Microcystin-LR Exposure Damages Neurons by Inducing α-Syn Aggregation via MAPK4/GATA2/SNCA and PP2A/GRKs Pathways. Mol. Neurobiol. 2025, 62, 6195–6211. https://doi.org/10.1007/s12035-024-04683-7.
- 45.
Lee, S.E. Guam dementia syndrome revisited in 2011. Curr. Opin. Neurol. 2011, 24, 517–524. https://doi.org/10.1097/WCO.0b013e32834cd50a.
- 46.
Colas, S.; Marie, B.; Lance, E.; et al. Anatoxin-a: Overview on a harmful cyanobacterial neurotoxin from the environmental scale to the molecular target. Environ. Res. 2021, 193, 110590. https://doi.org/10.1016/j.envres.2020.110590.
- 47.
Kumar, N.; Garg, A. Structural optimization and docking studies of anatoxin-a: A potent neurotoxin. African J. Biotechnol. 2014, 13, 3092–3100. https://doi.org/10.5897/ajb2014.13671.
- 48.
Bezprozvanny, I.B. Calcium signaling and neurodegeneration. Acta Naturae 2010, 2, 72–80. https://doi.org/10.32607/20758251-2010-2-1-72-80.
- 49.
Campos, F.; Alfonso, M.; Vidal, L.; et al. Mediation of glutamatergic receptors and nitric oxide on striatal dopamine release evoked by anatoxin-a. An in vivo microdialysis study. Eur. J. Pharmacol. 2006, 548, 90–98. https://doi.org/10.1016/j.ejphar.2006.07.044.
- 50.
Fernandes, K.A.; Fadul, J.C.; Fiore, M.F.; et al. A systematic review on guanitoxin: General characteristics and ecological risks. Chemosphere 2024, 352, 141277. https://doi.org/10.1016/j.chemosphere.2024.141277.
- 51.
Patocka, J.; Gupta, R.C.; Kamil, K. Anatoxin-A(S): Natural organophosphorus anticholinesterase agent. Mil. Med. Sci. Lett. 2011, 80, 129–139. https://doi.org/10.31482/mmsl.2011.019.
- 52.
Walczak-Nowicka, Ł.J.; Herbet, M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int. J. Mol. Sci. 2021, 22, 9290. https://doi.org/10.3390/ijms22179290.
- 53.
Belykh, O.I.; Tikhonova, I.V.; Kuzmin, A.V.; et al. First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon. 2016, 121, 36–40. https://doi.org/10.1016/j.toxicon.2016.08.015.
- 54.
Moustaka-Gouni, M.; Hiskia, A.; Genitsaris, S.; et al. First report of Aphanizomenon favaloroi occurrence in Europe associated with saxitoxins and a massive fish kill in Lake Vistonis, Greece. Mar. Freshw. Res. 2017, 68, 793–800. https://doi.org/10.1071/MF16029.
- 55.
Suleiman, M.; Jelip, J.; Rundi, C.; et al. Case Report: Paralytic Shellfish Poisoning in Sabah, Malaysia. Am. J. Trop. Med. Hyg. 2017, 97, 1731–1736. https://doi.org/10.4269/ajtmh.17-0589.
- 56.
Botelho, M.J.; Milinovic, J.; Bandarra, N.M.; et al. Alzheimer’s Disease and Toxins Produced by Marine Dinoflagellates: An Issue to Explore. Mar. Drugs 2022, 20, 253. https://doi.org/10.3390/md20040253.
- 57.
Rhodes, L.A.; McCarl, B.A. An analysis of climate impacts on herbicide, insecticide, and fungicide expenditures. Agron. 2020, 10, 745. https://doi.org/10.3390/AGRONOMY10050745.
- 58.
Noyes, P.D.; McElwee, M.K.; Miller, H.D.; et al. The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int. 2009, 35, 971–986. https://doi.org/10.1016/J.ENVINT.2009.02.006.
- 59.
Damalas, C.A. Understanding benefits and risks of pesticide use. Sci. Res. Essays 2009, 4, 945–949.
- 60.
Pogacean, M.O.; Gavrilescu, M. Plant protection products and their sustainable and environmentally friendly use. Environ. Eng. Manag. J. 2009, 8, 607–627. https://doi.org/10.30638/eemj.2009.084.
- 61.
Żak, A. Plant protection products versus changes in the natural environment and their impact on the human health. Probl. Agric. Econ. 2016, 346, 155–166. https://doi.org/10.30858/zer/83045.
- 62.
Kamel, F.; Hoppin, J.A. Association of pesticide exposure with neurologic dysfunction and disease. Environ. Health Perspect. 2004, 112, 950–958. https://doi.org/10.1289/ehp.7135.
- 63.
Li, G.; Kim, C.; Kim, J.; et al. Common Pesticide, Dichlorodiphenyltrichloroethane (DDT), Increases Amyloid-β Levels by Impairing the Function of ABCA1 and IDE: Implication for Alzheimer’s Disease. J. Alzheimer’s Dis. 2015, 46, 109–122. https://doi.org/10.3233/JAD-150024.
- 64.
Richardson, J.R.; Roy, A.; Shalat, S.L.; et al. Elevated Serum Pesticide Levels and Risk for Alzheimer Disease. JAMA Neurol. 2014, 71, 284–290. https://doi.org/10.1001/jamaneurol.2013.6030.
- 65.
Parrales-Macias, V.; Michel, P.P.; Tourville, A.; et al. The Pesticide Chlordecone Promotes Parkinsonism-like Neurodegeneration with Tau Lesions in Midbrain Cultures and C. elegans Worms. Cells 2023, 12, 1336. https://doi.org/10.3390/cells12091336.
- 66.
Alehashem, M.; Alcaraz, A.J.; Hogan, N.; et al. Linking pesticide exposure to neurodegenerative diseases: An in vitro investigation with human neuroblastoma cells. Sci. Tot. Environ. 2024, 933, 173041. https://doi.org/10.1016/j.scitotenv.2024.173041.
- 67.
Ferraz da Silva, I.; Freitas-Lima, L.C.; Graceli, J.B.; et al. Organotins in neuronal damage, brain function, and behavior: A short review. Front. Endocrinol. 2018, 8, 366. https://doi.org/10.3389/fendo.2017.00366.
- 68.
Baltazar, M.T.; Dinis-Oliveira, R.J.; de Lourdes Bastos, M.; et al. Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases—A mechanistic approach. Toxicol. Lett. 2014, 230, 85–103. https://doi.org/10.1016/j.toxlet.2014.01.039.
- 69.
Mostafalou, S.; Abdollahi, M. The link of organophosphorus pesticides with neurodegenerative and neurodevelopmental diseases based on evidence and mechanisms. Toxicology 2018, 409, 44–52. https://doi.org/10.1016/J.TOX.2018.07.014.
- 70.
Sánchez-Santed, F.; Colomina, M.T.; Hernández, E.H. Organophosphate pesticide exposure and neurodegeneration. Cortex 2016, 74, 417–426. https://doi.org/10.1016/j.cortex.2015.10.003.
- 71.
Zaganas, I.; Kapetanaki, S.; Mastorodemos, V.; et al. Linking pesticide exposure and dementia: What is the evidence? Toxicology 2013, 307, 3–11. https://doi.org/10.1016/J.TOX.2013.02.002.
- 72.
Tanner, C.M.; Kame, F.; Ross, G.W.; et al. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect. 2011, 119, 866–872. https://doi.org/10.1289/ehp.1002839.
- 73.
Lini, R.S.; Scanferla, D.T.P.; de Oliveira, N.G.; et al. Fungicides as a risk factor for the development of neurological diseases and disorders in humans: A systematic review. Crit. Rev. Toxicol. 2024, 54, 35–54. https://doi.org/10.1080/10408444.2024.2303481.
- 74.
Barrett, J.R. More concerns for farmers. Neurologic effects of chronic pesticide exposure. Environ. Health Perspect. 2005, 113, A472. https://doi.org/10.1289/ehp.113-a472a.
- 75.
Perry, J.; Cotton, J.; Rahman, M.A.; et al. Organophosphate exposure and the chronic effects on farmers: A narrative review. Rural Remote Health 2020, 20, 4508. https://doi.org/10.22605/RRH4508.
- 76.
Doi, M.; Usui, N.; Shimada, S. Prenatal environment and neurodevelopmental Disorders. Front. Endocrinol. 2022, 13, 860110. https://doi.org/10.3389/fendo.2022.860110.
- 77.
Roberts, J.R.; Dawley, E.H.; Reigart, J.R. Children’s low-level pesticide exposure and associations with autism and ADHD: A review. Pediatr. Res. 2018, 852, 234–241. https://doi.org/10.1038/s41390-018-0200-z.
- 78.
Bogaert, E.; d’Ydewalle, C.; Van Den Bosch, L. Amyotrophic lateral sclerosis and excitotoxicity: From pathological mechanism to therapeutic target. CNS. Neurol. Disord. Drug Targets 2010, 9, 297–304. https://doi.org/10.2174/187152710791292576.
- 79.
Van Cutsem, P.; Dewil, M.; Robberecht, W.; et al. Excitotoxicity and amyotrophic lateral sclerosis. Neurodegener. Dis. 2005, 2, 147–159. https://doi.org/10.1159/000089620.
- 80.
Kamel, F.; Umbach, D.M.; Bedlack, R.S.; et al. Pesticide exposure and amyotrophic lateral sclerosis. Neurotoxicol. 2012, 33, 457–462. https://doi.org/10.1016/j.neuro.2012.04.001.
- 81.
Cheng, J.L.; Cook, A.L.; Talbot, J.; et al. How is excitotoxicity being modelled in iPSC-derived neurons? Neurotox. Res. 2024, 425, 1–20. https://doi.org/10.1007/S12640-024-00721-3.
- 82.
Tang, K.H. Climate Change and Plastic Pollution: A Review of Their Connections. Trop. Environ. Biol. Technol. 2023, 1, 110–120. https://doi.org/10.53623/tebt.v1i2.341.
- 83.
Prüst, M.; Meijer, J.; Westerink, R.H. The plastic brain: Neurotoxicity of micro- and nanoplastics. Part. Fibre Toxicol. 2020, 17, 24. https://doi.org/10.1186/s12989-020-00358-y.
- 84.
Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. https://doi.org/10.1016/j.envint.2017.02.013.
- 85.
Shen, M.; Huang, W.; Chen, M.; et al. (Micro)plastic crisis: Un-ignorable contribution to global greenhouse gas emissions and climate change. J. Clean Prod. 2020, 254, 120138 https://doi.org/10.1016/j.jclepro.2020.120138.
- 86.
Ford, H.V.; Jones, N.H.; Davies, A.J.; et al. The fundamental links between climate change and marine plastic pollution. Sci. Total Environ. 2022, 86, 150392. https://doi.org/10.1016/j.scitotenv.2021.150392.
- 87.
Cheung, C.K.H.; Not, C. Impacts of extreme weather events on microplastic distribution in coastal environments. Sci. Total Environ. 2023, 904, 166723. https://doi.org/10.1016/j.scitotenv.2023.166723.
- 88.
Daniel, D.B.; Ashraf, P.M.; Thomas, S.N. Impact of 2018 Kerala flood on the abundance and distribution of microplastics in marine environment off Cochin, Southeastern Arabian Sea, India. Reg. Stud. Mar. Sci. 2022, 53, 102367. https://doi.org/10.1016/j.rsma.2022.102367.
- 89.
Hitchcock, J.N. Storm events as key moments of microplastic contamination in aquatic ecosystems. Sci. Total Environ. 2020, 734, 139436. https://doi.org/10.1016/j.scitotenv.2020.139436.
- 90.
Nakajima, R.; Miyama, T.; Kitahashi, T.; et al. Plastic After an Extreme Storm: The Typhoon-Induced Response of Micro- and Mesoplastics in Coastal Waters. Front. Mar. Sci. 2022, 8, 1–11. https://doi.org/10.3389/fmars.2021.806952.
- 91.
Paing, Y.M.M.; Eom, Y.; Song, G.B.; et al. Neurotoxic effects of polystyrene nanoplastics on memory and microglial activation: Insights from in vivo and in vitro studies. Sci. Tot. Environ. 2024, 924, 171681. https://doi.org/10.1016/j.scitotenv.2024.171681.
- 92.
Ma, M.; Coulon, F.; Tang, Z.; et al. Unveiling the Truth of Interactions between Microplastics and Per- and Polyfluoroalkyl Substances (PFASs) in Wastewater Treatment Plants: Microplastics as a Carrier of PFASs and Beyond. Environ. Sci. Technol. 2025, 59, 2211–2221. https://doi.org/10.1021/acs.est.4c08898.
- 93.
Lin, P.; Liu, L.; Ma, Y.; et al. Neurobehavioral toxicity induced by combined exposure of micro/nanoplastics and triphenyltin in marine medaka (Oryzias melastigma). Environ. Pollut. 2024, 356, 124334. https://doi.org/10.1016/j.envpol.2024.124334.
- 94.
Cheng, H. Future Earth and Sustainable Developments. Innovation 2020, 1, 100055. https://doi.org/10.1016/j.xinn.2020.100055.