- 1.
Khairul, M.A.; Zanganeh, J.; Moghtaderi, B. The composition, recycling and utilisation of Bayer red mud. Resour. Conserv. Recycl. 2019, 141, 483–498.
- 2.
Sun, C.; Chen, J.; Tian, K.; et al. Geochemical Characteristics and Toxic Elements in Alumina Refining Wastes and Leachates from Management Facilities. Int. J. Environ. Res. Public Health 2019, 16, 1297.
- 3.
Döring, J.; Beck, T.; Beyermann, M.; et al. Exposure and radiation protection for work areas with enhanced natural radioactivity. In Proceedings of Naturally Occurring Radioactive Material (NORM V), Seville, Spain, 19–22 March 2007.
- 4.
Jovičević-Klug, M.; Souza Filho, I.R.; Springer, H.; et al. Green steel from red mud through climate-neutral hydrogen plasma reduction. Nature 2024, 625, 703–709.
- 5.
Archambo, M. New Horizons for Processing and Utilizing Red Mud. Ph.D. Thesis, Michigan Technological University, Houghton, MI, USA, 2021.
- 6.
Rai, S.; Bahadure, S.; Chaddha, M.J.; et al. Disposal Practices and Utilization of Red Mud (Bauxite Residue): A Review in Indian Context and Abroad. J. Sustain. Metall. 2019, 6, 1–8.
- 7.
CPCB Team. Guidelines for Handling and Management of Red Mud Generated from Alumina Plants; Central Pollution Control Board, Ministry of Environment, Forest and Climate Change: Delhi, India, 2023; p. 122.
- 8.
Ruyters, S.; Mertens, J.; Vassilieva, E.; et al. The Red Mud Accident in Ajka (Hungary): Plant Toxicity and Trace Metal Bioavailability in Red Mud Contaminated Soil. Environ. Sci. Technol. 2011, 45, 1616–1622.
- 9.
Gelencsér, A.; Kováts, N.; Turóczi, B.; et al. The Red Mud Accident in Ajka (Hungary): Characterization and Potential Health Effects of Fugitive Dust. Environ. Sci. Technol. 2011, 45, 1608–1615.
- 10.
Päivärinta-Antikainen, S.; Huovinen, M.; Ojala, S.; et al. Leaching of metals from red mud and toxicity in human cells in vitro. Chemosphere 2023, 332, 138807.
- 11.
Tuazon, D.; Corder, G.D. Life cycle assessment of seawater neutralized red mud for treatment of acid mine drainage. Resour. Conserv. Recycl. 2008, 52, 1307–1314.
- 12.
Kılcan, C.O.; Georgiades, M.; Rupert, R.J.; et al. Comparative Life Cycle Assessment of Composite Portland Cement Incorporating Bauxite Residue. In Proceedings of the 42nd Annual Cement & Concrete Science Conference, London, UK, 11–12 September 2023.
- 13.
Adelfio, L.; Sgarbossa, F.; Leone, R.; et al. Life cycle assessment of red mud-based geopolymer production at industrial scale. In Proceedings of the IFIP WG 5.7 International Conference, APMS 2023, Trondheim, Norway, 17–21 September 2023.
- 14.
Occhicone, A.; Vukčević, M.; Bosković, I.; et al. Alkali-activated red mud and construction and demolition waste-based components: Characterization and environmental assessment. Materials 2022, 15, 1617.
- 15.
Ma, Y.; Pettersen, J.B. Life cycle assessment of pig iron production from bauxite residue. J. Ind. Ecol. 2023, 27, 1639–1652.
- 16.
Joyce, P.J.; Björklund, A. Using life cycle thinking to assess the sustainability benefits of complex valorization pathways for bauxite residue. J. Sustain. Metall. 2019, 5, 69–84.
- 17.
ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006; p. 20.
- 18.
ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006; p. 46.
- 19.
Komnitsas, K.; Bartzas, G.; Paspaliaris, I. Efficiency of limestone and red mud barriers: Laboratory column studies. Miner. Eng. 2004, 17, 183–194.
- 20.
Bartzas, G.; Komnitsas, K. Life cycle analysis of pistachio production in Greece. Sci. Total Environ. 2015, 595, 13–24.
- 21.
Bartzas, G.; Komnitsas, K. Cradle to gate life-cycle assessment of battery grade nickel sulphate production through high-pressure acid leaching. Sci. Total Environ. 2024, 952, 175902.
- 22.
La Rosa, A.; Carvalho, R.; Dias, M.; et al. LCA and LCC Analysis of the Recovering and Reusing Scenario of Metal-Plastic Process Scraps. Mater. Circ. Econ. 2024, 6, 4.
- 23.
Balomenos, E. Bauxite residue handling practice and valorisation research in Aluminum of Greece. In Proceedings of the 2th International Bauxite Residue Valorisation and Best Practices Conference, Athens, Greece, 7–10 May 2018.
- 24.
Sakaroglou, M.; Anastassakis, G.N. Nickel recovery from electric arc furnace slag by magnetic separation. J. Min. Metall. 2016, 53, 3–15.
- 25.
Komnitsas, K.; Yurramendi, L.; Bartzas, G.; et al. Factors affecting co-valorization of fayalitic and ferronickel slags for the production of alkali activated materials. Sci. Total Environ. 2020, 721, 137753.
- 26.
Komnitsas, K.; Karmali, V.; Vathi, D.; et al. Factors affecting the properties of slag-based alkali-activated materials. Mater. Proc. 2023, 15, 19.
- 27.
Zaharaki, D.; Galetakis, M.; Komnitsas, K. Valorization of construction and demolition (C&D) and industrial wastes through alkali activation. Constr. Build. Mater. 2016, 121, 686–693.
- 28.
Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; et al. Implementation of Life Cycle Impact Assessment Methods. In Ecoinvent Report No. 3, v2.0; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007.
- 29.
Hauschild, M.Z.; Goedkoop, M.; Guinée, J.; et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 2013, 18, 683–697.
- 30.
Kosai, S.; Yamasue, E. Global warming potential and total material requirement in metal production: Identification of changes in environmental impact through metal substitution. Sci. Total Environ. 2019, 651, 1764–1775.
- 31.
DAPEEP. Residual Energy Mix 2020, Renewable Energy Sources, Operator and Guarantees of Origin. Available online: https://www.dapeep.gr/wp-content/uploads/2021/07/20210614_Residual%20Energy%20Mix_20201.pdf?_t=1627024624 (accessed on 12 May 2024).
- 32.
Saxe, S.; Kasraian, D. Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment. J. Ind. Ecol. 2020, 24, 1031–1046.
- 33.
François, C.; Gondran, N.; Nicolas, J. Spatial and territorial developments for life cycle assessment applied to urban mobility—Case study on Lyon area in France. Int. J. Life Cycle Assess. 2021, 26, 543–560.
- 34.
Salas, D.A.; Ramirez, A.D.; Ulloa, N.; et al. Life cycle assessment of geopolymer concrete. Constr. Build. Mater. 2018, 190, 170–177.
- 35.
Li, G.; Liu, J.; Yi, L.; et al. Bauxite Residue (Red Mud) Treatment: Current Situation and Promising Solution. Sci. Total Environ. 2024, 948, 174757.
- 36.
Lee, J.H.; Cho, M.; Tal, G.; et al. Do Plug-in Hybrid Adopters Switch to Battery Electric Vehicles (and Vice Versa)? Transp. Res. Part D Transp. Environ. 2023, 119, 103752.
- 37.
Di Carlo, E.; Boullemant, A.; Courtney, R. A Field Assessment of Bauxite Residue Rehabilitation Strategies. Sci. Total Environ. 2019, 663, 915–926.
- 38.
Yang, Y.; Li, C.; Li, H.; et al. Microwave-Thermal-Assisted Curing Method on Geopolymer Preparation from Panzhihua High-Titanium Slag by Alkali Activation. Constr. Build. Mater. 2023, 400, 132614.