2509001385
  • Open Access
  • Review

Advances in Paper-Based Ammonia Sensors in Environment: Sustainable Materials, Nanotechnology Integration, and Smart Analytical Platforms

  • Sharmi Ganguly 1,   
  • Joydip Sengupta 2,   
  • Chaudhery Mustansar Hussain 3, *

Received: 23 Jun 2025 | Revised: 09 Sep 2025 | Accepted: 22 Sep 2025 | Published: 25 Sep 2025

Abstract

This review provides a comprehensive analysis of recent developments in sustainable paper-based sensors for ammonia detection, emphasizing their potential as low-cost, portable, and environmentally benign alternatives to conventional analytical techniques. It systematically evaluates principal sensing strategies including colorimetric, electrochemical, and chemiresistive modalities that utilize natural dyes, engineered nanomaterials, and conductive polymers to achieve enhanced sensitivity and rapid signal transduction. With operational lifespans of 30 to 45 days, colorimetric platforms based on plant extracts and anthocyanins can detect as little as 0.5 mg L1 in aqueous medium, which makes them ideal for low-cost, disposable applications. WS2–PANI hybrids and CNT/PPy/Pt are examples of chemiresistive nanocomposite sensors that exhibit ppb-level detection (down to 5 ppb) in gaseous environments, fast response–recovery periods (less than 45 s and about 80 s, respectively), and stability for more than 60 days in ambient humidity. Advances in fabrication methodologies such as additive manufacturing and three-dimensional microstructured platforms have facilitated the creation of mechanically flexible devices with capabilities for smartphone-based signal acquisition and real-time analytical performance across diverse application domains. These include environmental surveillance, food quality assessment, occupational safety, and clinical diagnostics, wherein sensor efficacy approaches or surpasses that of standard instrumentation. The review also addresses critical limitations such as analyte selectivity and temporal stability, and explores emerging directions involving integration with internet of things frameworks, use of fully biodegradable substrates, and simultaneous detection of multiple chemical targets. The collective progress reflects a paradigm shift toward the deployment of accessible and ecologically responsible sensing technologies aligned with global health and environmental sustainability objectives.

Graphical Abstract

References 

  • 1.
    Battye, W.; Aneja, V.P.; Roelle, P.A. Evaluation and Improvement of Ammonia Emissions Inventories. Atmos. Environ. 2003, 37, 3873–3883. https://doi.org/10.1016/S1352-2310(03)00343-1.
  • 2.
    Liu, Y.; Xiao, S.; Du, K. Chemiresistive Gas Sensors Based on Hollow Heterojunction: A Review. Adv. Mater. Interfaces 2021, 8, 2002122. https://doi.org/10.1002/admi.202002122.
  • 3.
    Dai, G.-Z.; Shang, J.-L.; Qiu, B.-S. Ammonia May Play an Important Role in the Succession of Cyanobacterial Blooms and the Distribution of Common Algal Species in Shallow Freshwater Lakes. Glob. Change Biol. 2012, 18, 1571–1581. https://doi.org/10.1111/j.1365-2486.2012.02638.x.
  • 4.
    Zhang, B.; Li, Z.; Li, C.; et al. High-Sensitive Ppb-Level Ammonia QCM Sensor Based on Sulfur Doped Ti3C2TX MXene. Sens. Actuators A Phys. 2023, 350, 114138. https://doi.org/10.1016/j.sna.2022.114138.
  • 5.
    Kumar, L.; Rawal, I.; Kaur, A.; et al. Flexible Room Temperature Ammonia Sensor Based on Polyaniline. Sens. Actuators B Chem. 2017, 240, 408–416. https://doi.org/10.1016/j.snb.2016.08.173.
  • 6.
    Aarya, S.; Kumar, Y.; Chahota, R.K. Recent Advances in Materials, Parameters, Performance and Technology in Ammonia Sensors: A Review. J. Inorg. Organomet. Polym. Mater. 2020, 30, 269–290. https://doi.org/10.1007/s10904-019-01208-x.
  • 7.
    Fedoruk, M.J.; Bronstein, R.; Kerger, B.D. Ammonia Exposure and Hazard Assessment for Selected Household Cleaning Product Uses. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 534–544. https://doi.org/10.1038/sj.jea.7500431.
  • 8.
    Li, H.-Y.; Lee, C.-S.; Kim, D.H.; et al. Flexible Room-Temperature NH3 Sensor for Ultrasensitive, Selective, and Humidity-Independent Gas Detection. ACS Appl. Mater. Interfaces 2018, 10, 27858–27867. https://doi.org/10.1021/acsami.8b09169.
  • 9.
    Demutskaya, L.N.; Kalinichenko, I.E. Photometric Determination of Ammonium Nitrogen with the Nessler Reagent in Drinking Water after Its Chlorination. J. Water Chem. Technol. 2010, 32, 90–94. https://doi.org/10.3103/S1063455X10020049.
  • 10.
    Krishnan, S.T.; Devadhasan, J.P.; Kim, S. Recent Analytical Approaches to Detect Exhaled Breath Ammonia with Special Reference to Renal Patients. Anal. Bioanal. Chem. 2017, 409, 21–31. https://doi.org/10.1007/s00216-016-9903-3.
  • 11.
    Zhou, L.; Boyd, C.E. Comparison of Nessler, Phenate, Salicylate and Ion Selective Electrode Procedures for Determination of Total Ammonia Nitrogen in Aquaculture. Aquaculture 2016, 450, 187–193. https://doi.org/10.1016/j.aquaculture.2015.07.022.
  • 12.
    Buazar, H.; Larki, A.; Pourreza, N. Digital Colorimetric Detection of Ammonium in Water Samples after Microextraction Procedure Using Deep Eutectic Solvent, Based on DLLME Method. J. Mol. Liq. 2024, 404, 124938. https://doi.org/10.1016/j.molliq.2024.124938.
  • 13.
    Ran, J.; Zhang, L.; Yao, J.; et al. Cucurbit[7]Uril as a Matrix Solid-Phase Dispersion for the Extraction of Quaternary Ammonium Pesticides from Vegetables and Their Determination Using HPLC-UV. Food Chem. 2021, 350, 129236. https://doi.org/10.1016/j.foodchem.2021.129236.
  • 14.
    Santos, M.C.D.; Nascimento, Y.M.; Monteiro, J.D.; et al. ATR-FTIR Spectroscopy with Chemometric Algorithms of Multivariate Classification in the Discrimination between Healthy vs. Dengue vs. Chikungunya vs. Zika Clinical Samples. Anal. Methods 2018, 10, 1280–1285. https://doi.org/10.1039/C7AY02784B.
  • 15.
    Jamdegni, M.; Kaur-Ghumaan, S.; Kaur, A. Study of Polyaniline and Functionalized ZnO Composite Film Linked through a Binding Agent for Efficient and Stable Electrochromic Applications. Electrochim. Acta 2017, 252, 578–588. https://doi.org/10.1016/j.electacta.2017.08.144.
  • 16.
    Zhang, T.; Li, W.; Shi, Y.; et al. Polyaniline-Based Room Temperature Ammonia Gas Sensor Employing Hybrid Organic-Inorganic Substrate. Mater. Chem. Phys. 2022, 288, 126404. https://doi.org/10.1016/j.matchemphys.2022.126404.
  • 17.
    Lv, D.; Shen, W.; Chen, W.; et al. One-Step Preparation of Flexible Citric Acid-Doped Polyaniline Gas Sensor for Ppb-Level Ammonia Detection at Room Temperature. Sens. Actuators A Phys. 2023, 350, 114120. https://doi.org/10.1016/j.sna.2022.114120.
  • 18.
    Rai, R.; Roether, J.A.; Boccaccini, A.R. Polyaniline Based Polymers in Tissue Engineering Applications: A Review. Prog. Biomed. Eng. 2022, 4, 042004. https://doi.org/10.1088/2516-1091/ac93d3.
  • 19.
    Chen, X.; Chen, X.; Ding, X.; et al. Enhanced Ammonia Sensitive Properties and Mechanism Research of PANI Modified with Hydroxylated Single-Walled Nanotubes. Mater. Chem. Phys. 2019, 226, 378–386. https://doi.org/10.1016/j.matchemphys.2019.01.061.
  • 20.
    Ma, L.; Zhang, S.; Wang, J.; et al. Recent Advances in Non-Fullerene Organic Solar Cells: From Lab to Fab. Chem. Commun. 2020, 56, 14337–14352. https://doi.org/10.1039/D0CC05528J.
  • 21.
    Sardana, S.; Kaur, H.; Arora, B.; et al. Self-Powered Monitoring of Ammonia Using an MXene/TiO2/Cellulose Nanofiber Heterojunction-Based Sensor Driven by an Electrospun Triboelectric Nanogenerator. ACS Sens. 2022, 7, 312–321. https://doi.org/10.1021/acssensors.1c02388.
  • 22.
    Shekhirev, M.; Shuck, C.E.; Sarycheva, A.; et al. Characterization of MXenes at Every Step, from Their Precursors to Single Flakes and Assembled Films. Prog. Mater. Sci. 2021, 120, 100757. https://doi.org/10.1016/j.pmatsci.2020.100757.
  • 23.
    Lim, K.R.G.; Shekhirev, M.; Wyatt, B.C.; et al. Fundamentals of MXene Synthesis. Nat. Synth. 2022, 1, 601–614. https://doi.org/10.1038/s44160-022-00104-6.
  • 24.
    Kim, S.J.; Koh, H.-J.; Ren, C.E.; et al. Metallic Ti3C2TX MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano 2018, 12, 986–993. https://doi.org/10.1021/acsnano.7b07460.
  • 25.
    Wu, M.; He, M.; Hu, Q.; et al. Ti3C2 MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature. ACS Sens. 2019, 4, 2763–2770. https://doi.org/10.1021/acssensors.9b01308.
  • 26.
    Lee, S.H.; Eom, W.; Shin, H.; et al. Room-Temperature, Highly Durable Ti3C2TX MXene/Graphene Hybrid Fibers for NH3 Gas Sensing. ACS Appl. Mater Interfaces 2020, 12, 10434–10442. https://doi.org/10.1021/acsami.9b21765.
  • 27.
    Quintana, S.E.; Salas, S.; García-Zapateiro, L.A. Bioactive Compounds of Mango (Mangifera Indica): A Review of Extraction Technologies and Chemical Constituents. J. Sci. Food Agric. 2021, 101, 6186–6192. https://doi.org/10.1002/jsfa.11455.
  • 28.
    Fan, Y.; Li, J.; Guo, Y.; et al. Digital Image Colorimetry on Smartphone for Chemical Analysis: A Review. Measurement 2021, 171, 108829. https://doi.org/10.1016/j.measurement.2020.108829.
  • 29.
    Chen, Y.; Zilberman, Y.; Mostafalu, P.; et al. Paper Based Platform for Colorimetric Sensing of Dissolved NH3 and CO2. Biosens. Bioelectron. 2015, 67, 477–484. https://doi.org/10.1016/j.bios.2014.09.010.
  • 30.
    Fernandes, G.M.; Silva, W.R.; Barreto, D.N.; et al. Novel Approaches for Colorimetric Measurements in Analytical Chemistry—A Review. Anal. Chim. Acta 2020, 1135, 187–203. https://doi.org/10.1016/j.aca.2020.07.030.
  • 31.
    Zhu, Y.; Yuan, D.; Lin, H.; et al. Determination of Ammonium in Seawater by Purge-and-Trap and Flow Injection with Fluorescence Detection. Anal. Lett. 2016, 49, 665–675. https://doi.org/10.1080/00032719.2015.1041027.
  • 32.
    Ovchinnikov, D.; Allain, A.; Huang, Y.-S.; et al. Electrical Transport Properties of Single-Layer WS2. ACS Nano 2014, 8, 8174–8181. https://doi.org/10.1021/nn502362b.
  • 33.
    Zhang, W.; Zhang, X.; Wu, Z.; et al. Mechanical, Electromagnetic Shielding and Gas Sensing Properties of Flexible Cotton Fiber/Polyaniline Composites. Compos. Sci. Technol. 2020, 188, 107966. https://doi.org/10.1016/j.compscitech.2019.107966.
  • 34.
    Han, Y.; Liu, Y.; Su, C.; et al. Interface Engineered WS2/ZnS Heterostructures for Sensitive and Reversible NO2 Room Temperature Sensing. Sens. Actuators B Chem. 2019, 296, 126666. https://doi.org/10.1016/j.snb.2019.126666.
  • 35.
    Wu, H.; Chen, Z.; Zhang, J.; et al. Phthalocyanine-Mediated Non-Covalent Coupling of Carbon Nanotubes with Polyaniline for Ultrafast NH3 Gas Sensors. J. Mater. Chem. A 2017, 5, 24493–24501. https://doi.org/10.1039/C7TA07443C.
  • 36.
    Polyakov, M.; Ivanova, V.; Klyamer, D.; et al. A Hybrid Nanomaterial Based on Single Walled Carbon Nanotubes Cross-Linked via Axially Substituted Silicon (IV) Phthalocyanine for Chemiresistive Sensors. Molecules 2020, 25, 2073. https://doi.org/10.3390/molecules25092073.
  • 37.
    Stebbins, N. Characterization and Mechanisms of Anthocyanin Degradation and Stabilization. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2017.
  • 38.
    Sun, W.; Liu, Y.; Jia, L.; et al. A Smart Nanofibre Sensor Based on Anthocyanin/Poly-l-Lactic Acid for Mutton Freshness Monitoring. Int. J. Food Sci. Technol. 2021, 56, 342–351. https://doi.org/10.1111/ijfs.14648.
  • 39.
    Saborirad, S.; Baghaei, H.; Hashemi-Moghaddam, H. Optimizing the Ultrasonic Extraction of Polyphenols from Mango Peel and Investigating the Characteristics, Antioxidant Activity and Storage Stability of Extract Nanocapsules in Maltodextrin/Whey Protein Isolate. Ultrason. Sonochem. 2024, 103, 106778. https://doi.org/10.1016/j.ultsonch.2024.106778.
  • 40.
    Gupta, V.; Malik, R.; Kumar, L. Highly Efficient and Cost-Effective Polyaniline-Based Ammonia Sensor on the Biodegradable Paper Substrate at Room Temperature. Mater. Chem. Phys. 2023, 310, 128388.
  • 41.
    Kashyap, A.; Sarma, H.; Chakraborty, B.; et al. Selective and Sensitive Detection of Ammonia at Room Temperature by the WS2-PANI Nanocomposite on a Flexible Paper-Based Sensor with Cost-Effective Chemically Expanded Graphite Ink Electrodes. ACS Appl. Electron. Mater. 2024, 6, 6916–6931. https://doi.org/10.1021/acsaelm.4c01273.
  • 42.
    Seekaew, Y.; Kamlue, S.; Wongchoosuk, C. Room-Temperature Ammonia Gas Sensor Based on Ti3C2TX MXene/Graphene Oxide/CuO/ZnO Nanocomposite. ACS Appl. Nano Mater. 2023, 6, 9008–9020. https://doi.org/10.1021/acsanm.3c01637.
  • 43.
    Xiong, Z.; Cai, S.; Zhang, Q.; et al. Binder-Free ZnTPP/CNT Paper for Room Temperature Ammonia Sensor and Mechanism Investigation. IEEE Sens. J. 2022, 22, 17706–17711. https://doi.org/10.1109/JSEN.2022.3194969.
  • 44.
    Wang, Z.; Yan, F.; Yu, Z.; et al. Fully Transient 3D Origami Paper-Based Ammonia Gas Sensor Obtained by Facile MXene Spray Coating. ACS Sens. 2024, 9, 1447–1457. https://doi.org/10.1021/acssensors.3c02558.
  • 45.
    Li, S.; Zhang, L. Accurate First-Principles Simulation for the Response of 2D Chemiresistive Gas Sensors. NPJ Comput. Mater. 2024, 10, 138. https://doi.org/10.1038/s41524-024-01329-z.
  • 46.
    Punetha, D.; Pandey, S.K. Ultrasensitive NH3 Gas Sensor Based on Au/ZnO/n-Si Heterojunction Schottky Diode. IEEE Trans. Electron Devices 2019, 66, 3560–3567. https://doi.org/10.1109/TED.2019.2921990.
  • 47.
    Bulemo, P.M.; Kim, D.H.; Shin, H.; et al. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chem.Rev. 2025, 125, 4111–4183.
  • 48.
    Jeong, S.-Y.; Kim, J.-S.; Lee, J.-H. Rational Design of Semiconductor-Based Chemiresistors and Their Libraries for Next-Generation Artificial Olfaction. Adv. Mater. 2020, 32, 2002075. https://doi.org/10.1002/adma.202002075.
  • 49.
    Qin, Z.; Ouyang, C.; Zhang, J.; et al. 2D WS2 Nanosheets with TiO2 Quantum Dots Decoration for High-Performance Ammonia Gas Sensing at Room Temperature. Sens. Actuators B Chem. 2017, 253, 1034–1042. https://doi.org/10.1016/j.snb.2017.07.052.
  • 50.
    Borghetti, M.; Cantù, E.; Ponzoni, A.; et al. Aerosol Jet Printed and Photonic Cured Paper-Based Ammonia Sensor for Food Smart Packaging. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. https://doi.org/10.1109/TIM.2022.3161695.
  • 51.
    Liu, J.; Cui, N.; Xu, Q.; et al. High-Performance PANI-Based Ammonia Gas Sensor Promoted by Surface Nanostructuralization. ECS J. Solid State Sci. Technol. 2021, 10, 027007. https://doi.org/10.1149/2162-8777/abe3ce.
  • 52.
    Borghetti, M.; Cantù, E.; Sardini, E.; et al. Preliminary analysis on a paper-based ammonia sensor for future food smart packaging. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT), Rome, Italy, 7–9 June 2021; pp. 140–144.
  • 53.
    Vargas-Muñoz, M.A.; Morales, J.; Cerdà, V.; et al. Paper Sensor-Based Method Using a Portable 3D-Printed Platform and Smartphone-Assisted Colorimetric Detection for Ammonia and Sulfide Monitoring in Anaerobic Digesters and Wastewater. Microchem. J. 2023, 188, 108469. https://doi.org/10.1016/j.microc.2023.108469.
  • 54.
    Nadi, F.; Hossain, S.; Rahmat, R.F.; et al. Detection of Ammonia in Aquaculture Wastewater Using Mango Leaf Extract-Immobilized Paper Sensors and Smartphone Colorimetric Analysis. Microchem. J. 2024, 207, 112257. https://doi.org/10.1016/j.microc.2024.112257.
  • 55.
    Du, L.; Feng, D.; Xing, X.; et al. Nanocomposite-Decorated Filter Paper as a Twistable and Water-Tolerant Sensor for Selective Detection of 5 Ppb-60 v/v% Ammonia. ACS Sens. 2022, 7, 874–883. https://doi.org/10.1021/acssensors.1c02681.
  • 56.
    Haq, S.U.; Aghajamali, M.; Hassanzadeh, H. Cost-Effective and Sensitive Anthocyanin-Based Paper Sensors for Rapid Ammonia Detection in Aqueous Solutions. RSC Adv. 2021, 11, 24387–24397. https://doi.org/10.1039/D1RA04069C.
  • 57.
    Heo, W.; Lim, S. A review on gas indicators and sensors for smart food packaging. Foods 2024, 13, 3047.
  • 58.
    Fujita, H.; Hao, M.; Takeoka, S.; et al. Paper-Based Wearable Ammonia Gas Sensor Using Organic–Inorganic Composite PEDOT:PSS with Iron(III) Compounds. Adv. Mater. Technol. 2022, 7, 2101486. https://doi.org/10.1002/admt.202101486.
  • 59.
    Sekhar, P.K.; Kysar, J.S. An Electrochemical Ammonia Sensor on Paper Substrate. J. Electrochem. Soc. 2017, 164, B113. https://doi.org/10.1149/2.0941704jes.
  • 60.
    Rath, R.J.; Oveissi, F.; Shahrbabaki, Z.; et al. A Paper-Based Sensor Capable of Differentiating Ammonia and Carbon Dioxide Gas. Mater. Today Commun. 2023, 35, 105895. https://doi.org/10.1016/j.mtcomm.2023.105895.
  • 61.
    Ismail, M.; Khan, M.I.; Akhtar, K.; et al. Phytosynthesis of Silver Nanoparticles; Naked Eye Cellulose Filter Paper Dual Mechanism Sensor for Mercury Ions and Ammonia in Aqueous Solution. J. Mater.Sci. Mater. Electron. 2019, 30, 7367–7383. https://doi.org/10.1007/s10854-019-01049-x.
  • 62.
    Jagannathan, M.; Dhinasekaran, D.; Rajendran, A.R.; et al. Selective Room Temperature Ammonia Gas Sensor Using Nanostructured ZnO/CuO@graphene on Paper Substrate. Sens. Actuators B: Chem. 2022, 350, 130833. https://doi.org/10.1016/j.snb.2021.130833.
  • 63.
    Bannov, A.G.; Popov, M.V.; Brester, A.E.; et al. Recent Advances in Ammonia Gas Sensors Based on Carbon Nanomaterials. Micromachines 2021, 12, 186. https://doi.org/10.3390/mi12020186.
  • 64.
    Maity, A.; Mitra, S.; Das, C.; et al. Universal Sensing of Ammonia Gas by Family of Lead Halide Perovskites Based on Paper Sensors: Experiment and Molecular Dynamics. Mater. Res. Bull. 2021, 136, 111142. https://doi.org/10.1016/j.materresbull.2020.111142.
  • 65.
    Barandun, G.; Soprani, M.; Naficy, S.; et al. Cellulose Fibers Enable Near-Zero-Cost Electrical Sensing of Water-Soluble Gases. ACS Sens. 2019, 4, 1662–1669. https://doi.org/10.1021/acssensors.9b00555.
  • 66.
    Hashemian, H.; Ghaedi, M.; Dashtian, K.; et al. Cellulose Acetate/MOF Film-Based Colorimetric Ammonia Sensor for Non-Destructive Remote Monitoring of Meat Product Spoilage. Int. J. Biol. Macromol. 2023, 249, 126065. https://doi.org/10.1016/j.ijbiomac.2023.126065.
  • 67.
    Liu, Y.; Wang, F.; Mei, Z.; et al. Advances in Cellulose-Based Self-Powered Ammonia Sensors. Carbohydr. Polym. 2025, 351, 123074. https://doi.org/10.1016/j.carbpol.2024.123074.
  • 68.
    Torres-Molina, M.A.; Erenas, M.M.; Ortega Munoz, M.; et al. Biocompatible Sensors for Ammonia Gas Detection. Talanta 2025, 281, 126916. https://doi.org/10.1016/j.talanta.2024.126916.
Share this article:
How to Cite
Ganguly, S.; Sengupta, J.; Hussain, C. M. Advances in Paper-Based Ammonia Sensors in Environment: Sustainable Materials, Nanotechnology Integration, and Smart Analytical Platforms. Earth: Environmental Sustainability 2025, 1 (1), 130–148. https://doi.org/10.53941/eesus.2025.100010.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.