- 1.
Battye, W.; Aneja, V.P.; Roelle, P.A. Evaluation and Improvement of Ammonia Emissions Inventories. Atmos. Environ. 2003, 37, 3873–3883. https://doi.org/10.1016/S1352-2310(03)00343-1.
- 2.
Liu, Y.; Xiao, S.; Du, K. Chemiresistive Gas Sensors Based on Hollow Heterojunction: A Review. Adv. Mater. Interfaces 2021, 8, 2002122. https://doi.org/10.1002/admi.202002122.
- 3.
Dai, G.-Z.; Shang, J.-L.; Qiu, B.-S. Ammonia May Play an Important Role in the Succession of Cyanobacterial Blooms and the Distribution of Common Algal Species in Shallow Freshwater Lakes. Glob. Change Biol. 2012, 18, 1571–1581. https://doi.org/10.1111/j.1365-2486.2012.02638.x.
- 4.
Zhang, B.; Li, Z.; Li, C.; et al. High-Sensitive Ppb-Level Ammonia QCM Sensor Based on Sulfur Doped Ti3C2TX MXene. Sens. Actuators A Phys. 2023, 350, 114138. https://doi.org/10.1016/j.sna.2022.114138.
- 5.
Kumar, L.; Rawal, I.; Kaur, A.; et al. Flexible Room Temperature Ammonia Sensor Based on Polyaniline. Sens. Actuators B Chem. 2017, 240, 408–416. https://doi.org/10.1016/j.snb.2016.08.173.
- 6.
Aarya, S.; Kumar, Y.; Chahota, R.K. Recent Advances in Materials, Parameters, Performance and Technology in Ammonia Sensors: A Review. J. Inorg. Organomet. Polym. Mater. 2020, 30, 269–290. https://doi.org/10.1007/s10904-019-01208-x.
- 7.
Fedoruk, M.J.; Bronstein, R.; Kerger, B.D. Ammonia Exposure and Hazard Assessment for Selected Household Cleaning Product Uses. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 534–544. https://doi.org/10.1038/sj.jea.7500431.
- 8.
Li, H.-Y.; Lee, C.-S.; Kim, D.H.; et al. Flexible Room-Temperature NH3 Sensor for Ultrasensitive, Selective, and Humidity-Independent Gas Detection. ACS Appl. Mater. Interfaces 2018, 10, 27858–27867. https://doi.org/10.1021/acsami.8b09169.
- 9.
Demutskaya, L.N.; Kalinichenko, I.E. Photometric Determination of Ammonium Nitrogen with the Nessler Reagent in Drinking Water after Its Chlorination. J. Water Chem. Technol. 2010, 32, 90–94. https://doi.org/10.3103/S1063455X10020049.
- 10.
Krishnan, S.T.; Devadhasan, J.P.; Kim, S. Recent Analytical Approaches to Detect Exhaled Breath Ammonia with Special Reference to Renal Patients. Anal. Bioanal. Chem. 2017, 409, 21–31. https://doi.org/10.1007/s00216-016-9903-3.
- 11.
Zhou, L.; Boyd, C.E. Comparison of Nessler, Phenate, Salicylate and Ion Selective Electrode Procedures for Determination of Total Ammonia Nitrogen in Aquaculture. Aquaculture 2016, 450, 187–193. https://doi.org/10.1016/j.aquaculture.2015.07.022.
- 12.
Buazar, H.; Larki, A.; Pourreza, N. Digital Colorimetric Detection of Ammonium in Water Samples after Microextraction Procedure Using Deep Eutectic Solvent, Based on DLLME Method. J. Mol. Liq. 2024, 404, 124938. https://doi.org/10.1016/j.molliq.2024.124938.
- 13.
Ran, J.; Zhang, L.; Yao, J.; et al. Cucurbit[7]Uril as a Matrix Solid-Phase Dispersion for the Extraction of Quaternary Ammonium Pesticides from Vegetables and Their Determination Using HPLC-UV. Food Chem. 2021, 350, 129236. https://doi.org/10.1016/j.foodchem.2021.129236.
- 14.
Santos, M.C.D.; Nascimento, Y.M.; Monteiro, J.D.; et al. ATR-FTIR Spectroscopy with Chemometric Algorithms of Multivariate Classification in the Discrimination between Healthy vs. Dengue vs. Chikungunya vs. Zika Clinical Samples. Anal. Methods 2018, 10, 1280–1285. https://doi.org/10.1039/C7AY02784B.
- 15.
Jamdegni, M.; Kaur-Ghumaan, S.; Kaur, A. Study of Polyaniline and Functionalized ZnO Composite Film Linked through a Binding Agent for Efficient and Stable Electrochromic Applications. Electrochim. Acta 2017, 252, 578–588. https://doi.org/10.1016/j.electacta.2017.08.144.
- 16.
Zhang, T.; Li, W.; Shi, Y.; et al. Polyaniline-Based Room Temperature Ammonia Gas Sensor Employing Hybrid Organic-Inorganic Substrate. Mater. Chem. Phys. 2022, 288, 126404. https://doi.org/10.1016/j.matchemphys.2022.126404.
- 17.
Lv, D.; Shen, W.; Chen, W.; et al. One-Step Preparation of Flexible Citric Acid-Doped Polyaniline Gas Sensor for Ppb-Level Ammonia Detection at Room Temperature. Sens. Actuators A Phys. 2023, 350, 114120. https://doi.org/10.1016/j.sna.2022.114120.
- 18.
Rai, R.; Roether, J.A.; Boccaccini, A.R. Polyaniline Based Polymers in Tissue Engineering Applications: A Review. Prog. Biomed. Eng. 2022, 4, 042004. https://doi.org/10.1088/2516-1091/ac93d3.
- 19.
Chen, X.; Chen, X.; Ding, X.; et al. Enhanced Ammonia Sensitive Properties and Mechanism Research of PANI Modified with Hydroxylated Single-Walled Nanotubes. Mater. Chem. Phys. 2019, 226, 378–386. https://doi.org/10.1016/j.matchemphys.2019.01.061.
- 20.
Ma, L.; Zhang, S.; Wang, J.; et al. Recent Advances in Non-Fullerene Organic Solar Cells: From Lab to Fab. Chem. Commun. 2020, 56, 14337–14352. https://doi.org/10.1039/D0CC05528J.
- 21.
Sardana, S.; Kaur, H.; Arora, B.; et al. Self-Powered Monitoring of Ammonia Using an MXene/TiO2/Cellulose Nanofiber Heterojunction-Based Sensor Driven by an Electrospun Triboelectric Nanogenerator. ACS Sens. 2022, 7, 312–321. https://doi.org/10.1021/acssensors.1c02388.
- 22.
Shekhirev, M.; Shuck, C.E.; Sarycheva, A.; et al. Characterization of MXenes at Every Step, from Their Precursors to Single Flakes and Assembled Films. Prog. Mater. Sci. 2021, 120, 100757. https://doi.org/10.1016/j.pmatsci.2020.100757.
- 23.
Lim, K.R.G.; Shekhirev, M.; Wyatt, B.C.; et al. Fundamentals of MXene Synthesis. Nat. Synth. 2022, 1, 601–614. https://doi.org/10.1038/s44160-022-00104-6.
- 24.
Kim, S.J.; Koh, H.-J.; Ren, C.E.; et al. Metallic Ti3C2TX MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano 2018, 12, 986–993. https://doi.org/10.1021/acsnano.7b07460.
- 25.
Wu, M.; He, M.; Hu, Q.; et al. Ti3C2 MXene-Based Sensors with High Selectivity for NH3 Detection at Room Temperature. ACS Sens. 2019, 4, 2763–2770. https://doi.org/10.1021/acssensors.9b01308.
- 26.
Lee, S.H.; Eom, W.; Shin, H.; et al. Room-Temperature, Highly Durable Ti3C2TX MXene/Graphene Hybrid Fibers for NH3 Gas Sensing. ACS Appl. Mater Interfaces 2020, 12, 10434–10442. https://doi.org/10.1021/acsami.9b21765.
- 27.
Quintana, S.E.; Salas, S.; García-Zapateiro, L.A. Bioactive Compounds of Mango (Mangifera Indica): A Review of Extraction Technologies and Chemical Constituents. J. Sci. Food Agric. 2021, 101, 6186–6192. https://doi.org/10.1002/jsfa.11455.
- 28.
Fan, Y.; Li, J.; Guo, Y.; et al. Digital Image Colorimetry on Smartphone for Chemical Analysis: A Review. Measurement 2021, 171, 108829. https://doi.org/10.1016/j.measurement.2020.108829.
- 29.
Chen, Y.; Zilberman, Y.; Mostafalu, P.; et al. Paper Based Platform for Colorimetric Sensing of Dissolved NH3 and CO2. Biosens. Bioelectron. 2015, 67, 477–484. https://doi.org/10.1016/j.bios.2014.09.010.
- 30.
Fernandes, G.M.; Silva, W.R.; Barreto, D.N.; et al. Novel Approaches for Colorimetric Measurements in Analytical Chemistry—A Review. Anal. Chim. Acta 2020, 1135, 187–203. https://doi.org/10.1016/j.aca.2020.07.030.
- 31.
Zhu, Y.; Yuan, D.; Lin, H.; et al. Determination of Ammonium in Seawater by Purge-and-Trap and Flow Injection with Fluorescence Detection. Anal. Lett. 2016, 49, 665–675. https://doi.org/10.1080/00032719.2015.1041027.
- 32.
Ovchinnikov, D.; Allain, A.; Huang, Y.-S.; et al. Electrical Transport Properties of Single-Layer WS2. ACS Nano 2014, 8, 8174–8181. https://doi.org/10.1021/nn502362b.
- 33.
Zhang, W.; Zhang, X.; Wu, Z.; et al. Mechanical, Electromagnetic Shielding and Gas Sensing Properties of Flexible Cotton Fiber/Polyaniline Composites. Compos. Sci. Technol. 2020, 188, 107966. https://doi.org/10.1016/j.compscitech.2019.107966.
- 34.
Han, Y.; Liu, Y.; Su, C.; et al. Interface Engineered WS2/ZnS Heterostructures for Sensitive and Reversible NO2 Room Temperature Sensing. Sens. Actuators B Chem. 2019, 296, 126666. https://doi.org/10.1016/j.snb.2019.126666.
- 35.
Wu, H.; Chen, Z.; Zhang, J.; et al. Phthalocyanine-Mediated Non-Covalent Coupling of Carbon Nanotubes with Polyaniline for Ultrafast NH3 Gas Sensors. J. Mater. Chem. A 2017, 5, 24493–24501. https://doi.org/10.1039/C7TA07443C.
- 36.
Polyakov, M.; Ivanova, V.; Klyamer, D.; et al. A Hybrid Nanomaterial Based on Single Walled Carbon Nanotubes Cross-Linked via Axially Substituted Silicon (IV) Phthalocyanine for Chemiresistive Sensors. Molecules 2020, 25, 2073. https://doi.org/10.3390/molecules25092073.
- 37.
Stebbins, N. Characterization and Mechanisms of Anthocyanin Degradation and Stabilization. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2017.
- 38.
Sun, W.; Liu, Y.; Jia, L.; et al. A Smart Nanofibre Sensor Based on Anthocyanin/Poly-l-Lactic Acid for Mutton Freshness Monitoring. Int. J. Food Sci. Technol. 2021, 56, 342–351. https://doi.org/10.1111/ijfs.14648.
- 39.
Saborirad, S.; Baghaei, H.; Hashemi-Moghaddam, H. Optimizing the Ultrasonic Extraction of Polyphenols from Mango Peel and Investigating the Characteristics, Antioxidant Activity and Storage Stability of Extract Nanocapsules in Maltodextrin/Whey Protein Isolate. Ultrason. Sonochem. 2024, 103, 106778. https://doi.org/10.1016/j.ultsonch.2024.106778.
- 40.
Gupta, V.; Malik, R.; Kumar, L. Highly Efficient and Cost-Effective Polyaniline-Based Ammonia Sensor on the Biodegradable Paper Substrate at Room Temperature. Mater. Chem. Phys. 2023, 310, 128388.
- 41.
Kashyap, A.; Sarma, H.; Chakraborty, B.; et al. Selective and Sensitive Detection of Ammonia at Room Temperature by the WS2-PANI Nanocomposite on a Flexible Paper-Based Sensor with Cost-Effective Chemically Expanded Graphite Ink Electrodes. ACS Appl. Electron. Mater. 2024, 6, 6916–6931. https://doi.org/10.1021/acsaelm.4c01273.
- 42.
Seekaew, Y.; Kamlue, S.; Wongchoosuk, C. Room-Temperature Ammonia Gas Sensor Based on Ti3C2TX MXene/Graphene Oxide/CuO/ZnO Nanocomposite. ACS Appl. Nano Mater. 2023, 6, 9008–9020. https://doi.org/10.1021/acsanm.3c01637.
- 43.
Xiong, Z.; Cai, S.; Zhang, Q.; et al. Binder-Free ZnTPP/CNT Paper for Room Temperature Ammonia Sensor and Mechanism Investigation. IEEE Sens. J. 2022, 22, 17706–17711. https://doi.org/10.1109/JSEN.2022.3194969.
- 44.
Wang, Z.; Yan, F.; Yu, Z.; et al. Fully Transient 3D Origami Paper-Based Ammonia Gas Sensor Obtained by Facile MXene Spray Coating. ACS Sens. 2024, 9, 1447–1457. https://doi.org/10.1021/acssensors.3c02558.
- 45.
Li, S.; Zhang, L. Accurate First-Principles Simulation for the Response of 2D Chemiresistive Gas Sensors. NPJ Comput. Mater. 2024, 10, 138. https://doi.org/10.1038/s41524-024-01329-z.
- 46.
Punetha, D.; Pandey, S.K. Ultrasensitive NH3 Gas Sensor Based on Au/ZnO/n-Si Heterojunction Schottky Diode. IEEE Trans. Electron Devices 2019, 66, 3560–3567. https://doi.org/10.1109/TED.2019.2921990.
- 47.
Bulemo, P.M.; Kim, D.H.; Shin, H.; et al. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chem.Rev. 2025, 125, 4111–4183.
- 48.
Jeong, S.-Y.; Kim, J.-S.; Lee, J.-H. Rational Design of Semiconductor-Based Chemiresistors and Their Libraries for Next-Generation Artificial Olfaction. Adv. Mater. 2020, 32, 2002075. https://doi.org/10.1002/adma.202002075.
- 49.
Qin, Z.; Ouyang, C.; Zhang, J.; et al. 2D WS2 Nanosheets with TiO2 Quantum Dots Decoration for High-Performance Ammonia Gas Sensing at Room Temperature. Sens. Actuators B Chem. 2017, 253, 1034–1042. https://doi.org/10.1016/j.snb.2017.07.052.
- 50.
Borghetti, M.; Cantù, E.; Ponzoni, A.; et al. Aerosol Jet Printed and Photonic Cured Paper-Based Ammonia Sensor for Food Smart Packaging. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. https://doi.org/10.1109/TIM.2022.3161695.
- 51.
Liu, J.; Cui, N.; Xu, Q.; et al. High-Performance PANI-Based Ammonia Gas Sensor Promoted by Surface Nanostructuralization. ECS J. Solid State Sci. Technol. 2021, 10, 027007. https://doi.org/10.1149/2162-8777/abe3ce.
- 52.
Borghetti, M.; Cantù, E.; Sardini, E.; et al. Preliminary analysis on a paper-based ammonia sensor for future food smart packaging. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT), Rome, Italy, 7–9 June 2021; pp. 140–144.
- 53.
Vargas-Muñoz, M.A.; Morales, J.; Cerdà, V.; et al. Paper Sensor-Based Method Using a Portable 3D-Printed Platform and Smartphone-Assisted Colorimetric Detection for Ammonia and Sulfide Monitoring in Anaerobic Digesters and Wastewater. Microchem. J. 2023, 188, 108469. https://doi.org/10.1016/j.microc.2023.108469.
- 54.
Nadi, F.; Hossain, S.; Rahmat, R.F.; et al. Detection of Ammonia in Aquaculture Wastewater Using Mango Leaf Extract-Immobilized Paper Sensors and Smartphone Colorimetric Analysis. Microchem. J. 2024, 207, 112257. https://doi.org/10.1016/j.microc.2024.112257.
- 55.
Du, L.; Feng, D.; Xing, X.; et al. Nanocomposite-Decorated Filter Paper as a Twistable and Water-Tolerant Sensor for Selective Detection of 5 Ppb-60 v/v% Ammonia. ACS Sens. 2022, 7, 874–883. https://doi.org/10.1021/acssensors.1c02681.
- 56.
Haq, S.U.; Aghajamali, M.; Hassanzadeh, H. Cost-Effective and Sensitive Anthocyanin-Based Paper Sensors for Rapid Ammonia Detection in Aqueous Solutions. RSC Adv. 2021, 11, 24387–24397. https://doi.org/10.1039/D1RA04069C.
- 57.
Heo, W.; Lim, S. A review on gas indicators and sensors for smart food packaging. Foods 2024, 13, 3047.
- 58.
Fujita, H.; Hao, M.; Takeoka, S.; et al. Paper-Based Wearable Ammonia Gas Sensor Using Organic–Inorganic Composite PEDOT:PSS with Iron(III) Compounds. Adv. Mater. Technol. 2022, 7, 2101486. https://doi.org/10.1002/admt.202101486.
- 59.
Sekhar, P.K.; Kysar, J.S. An Electrochemical Ammonia Sensor on Paper Substrate. J. Electrochem. Soc. 2017, 164, B113. https://doi.org/10.1149/2.0941704jes.
- 60.
Rath, R.J.; Oveissi, F.; Shahrbabaki, Z.; et al. A Paper-Based Sensor Capable of Differentiating Ammonia and Carbon Dioxide Gas. Mater. Today Commun. 2023, 35, 105895. https://doi.org/10.1016/j.mtcomm.2023.105895.
- 61.
Ismail, M.; Khan, M.I.; Akhtar, K.; et al. Phytosynthesis of Silver Nanoparticles; Naked Eye Cellulose Filter Paper Dual Mechanism Sensor for Mercury Ions and Ammonia in Aqueous Solution. J. Mater.Sci. Mater. Electron. 2019, 30, 7367–7383. https://doi.org/10.1007/s10854-019-01049-x.
- 62.
Jagannathan, M.; Dhinasekaran, D.; Rajendran, A.R.; et al. Selective Room Temperature Ammonia Gas Sensor Using Nanostructured ZnO/CuO@graphene on Paper Substrate. Sens. Actuators B: Chem. 2022, 350, 130833. https://doi.org/10.1016/j.snb.2021.130833.
- 63.
Bannov, A.G.; Popov, M.V.; Brester, A.E.; et al. Recent Advances in Ammonia Gas Sensors Based on Carbon Nanomaterials. Micromachines 2021, 12, 186. https://doi.org/10.3390/mi12020186.
- 64.
Maity, A.; Mitra, S.; Das, C.; et al. Universal Sensing of Ammonia Gas by Family of Lead Halide Perovskites Based on Paper Sensors: Experiment and Molecular Dynamics. Mater. Res. Bull. 2021, 136, 111142. https://doi.org/10.1016/j.materresbull.2020.111142.
- 65.
Barandun, G.; Soprani, M.; Naficy, S.; et al. Cellulose Fibers Enable Near-Zero-Cost Electrical Sensing of Water-Soluble Gases. ACS Sens. 2019, 4, 1662–1669. https://doi.org/10.1021/acssensors.9b00555.
- 66.
Hashemian, H.; Ghaedi, M.; Dashtian, K.; et al. Cellulose Acetate/MOF Film-Based Colorimetric Ammonia Sensor for Non-Destructive Remote Monitoring of Meat Product Spoilage. Int. J. Biol. Macromol. 2023, 249, 126065. https://doi.org/10.1016/j.ijbiomac.2023.126065.
- 67.
Liu, Y.; Wang, F.; Mei, Z.; et al. Advances in Cellulose-Based Self-Powered Ammonia Sensors. Carbohydr. Polym. 2025, 351, 123074. https://doi.org/10.1016/j.carbpol.2024.123074.
- 68.
Torres-Molina, M.A.; Erenas, M.M.; Ortega Munoz, M.; et al. Biocompatible Sensors for Ammonia Gas Detection. Talanta 2025, 281, 126916. https://doi.org/10.1016/j.talanta.2024.126916.