- 1.
Rathod, S.V.; Saras, P.; Gondaliya, S.M. Environmental Pollution: Threats and Challenges for Management. In Eco-Restoration of Polluted Environment; CRC Press: Boca Raton, FL, USA, 2024. ISBN 978-1-00-342339-3.
- 2.
Mejía-Marchena, R.; Maturana-Córdoba, A.; Gómez-Cerón, D.; et al. Industrial Wastewater Treatment Technologies for Reuse, Recycle, and Recovery: Advantages, Disadvantages, and Gaps. Environ. Technol. Rev. 2023, 12, 205–250. https://doi.org/10.1080/21622515.2023.2198147.
- 3.
Somu, P.; Narayanasamy, S.; Gomez, L.A.; et al. Immobilization of Enzymes for Bioremediation: A Future Remedial and Mitigating Strategy. Environ. Res. 2022, 212, 113411. https://doi.org/10.1016/j.envres.2022.113411.
- 4.
Yaashikaa, P.R.; Devi, M.K.; Kumar, P.S. Advances in the Application of Immobilized Enzyme for the Remediation of Hazardous Pollutant: A Review. Chemosphere 2022, 299, 134390. https://doi.org/10.1016/j.chemosphere.2022.134390.
- 5.
Singh, S.; Gupta, A.; Waswani, H.; et al. Impact of Pesticides on the Ecosystem. In Agrochemicals in Soil and Environment: Impacts and Remediation; Naeem, M., Bremont, J.F.J., Ansari, A.A., et al., Eds.; Springer Nature: Singapore, 2022; pp. 157–181. ISBN 9789811693106.
- 6.
Sun, M.; Xu, W.; Zhang, W.; et al. Microbial Elimination of Carbamate Pesticides: Specific Strains and Promising Enzymes. Appl. Microbiol. Biotechnol. 2022, 106, 5973–5986. https://doi.org/10.1007/s00253-022-12141-4.
- 7.
Chia, X.K.; Hadibarata, T.; Kristanti, R.A.; et al. The Function of Microbial Enzymes in Breaking down Soil Contaminated with Pesticides: A Review. Bioprocess Biosyst. Eng. 2024, 47, 597–620. https://doi.org/10.1007/s00449-024-02978-6.
- 8.
Shukla, E.; Bendre, A.D.; Gaikwad, S.M.; et al. Hydrolases: The Most Diverse Class of Enzymes. In Hydrolases; IntechOpen: London, UK, 2022. ISBN 978-1-80355-163-0.
- 9.
Sharma, S.; Bhatt, K.; Shrivastava, R.; Nadda, A.K. Chapter 14-Tyrosinase and Oxygenases: Fundamentals and Applications. In Biotechnology of Microbial Enzymes, 2nd ed.; Brahmachari, G., Ed.; Academic Press: New York, NY, USA, 2023; pp. 323–340. ISBN 978-0-443-19059-9.
- 10.
Chen, J.; Guo, Z.; Xin, Y.; et al. Effective Remediation and Decontamination of Organophosphorus Compounds Using Enzymes: From Rational Design to Potential Applications. Sci. Total Environ. 2023, 867, 161510. https://doi.org/10.1016/j.scitotenv.2023.161510.
- 11.
Sharma, A.K.; Pandit, J. Advanced Bioremediation Strategies for Organophosphorus Compounds. Microbiol. Biotechnol. Lett. 2023, 51, 374–389. https://doi.org/10.48022/mbl.2308.08011.
- 12.
Łomża, P.; Krucoń, T.; Tabernacka, A. Potential of Microbial Communities to Perform Dehalogenation Processes in Natural and Anthropogenically Modified Environments—A Metagenomic Study. Microorganisms 2023, 11, 1702. https://doi.org/10.3390/microorganisms11071702.
- 13.
Samadi-Maybodi, A.; Ghezel-Sofla, H.; BiParva, P. Simultaneous Removal of Phenoxy Herbicides, 2-Methyl-4-Chlorophenoxyacetic Acid and 2,4-Dichlorophenoxyacetic Acid from Aqueous Media by Magnetized MgAl-LDH@Fe3O4 Composite: Application of Partial Least Squares and Doehlert Experimental Design. J. Environ. Health Sci. Eng. 2024, 22, 97–121. https://doi.org/10.1007/s40201-023-00877-8.
- 14.
Puri, M.; Gandhi, K.; Suresh Kumar, M. A Global Overview of Endocrine Disrupting Chemicals in the Environment: Occurrence, Effects, and Treatment Methods. Int. J. Environ. Sci. Technol. 2023, 20, 12875–12902. https://doi.org/10.1007/s13762-022-04636-4.
- 15.
Ismanto, A.; Hadibarata, T.; Kristanti, R.A.; et al. Endocrine Disrupting Chemicals (EDCs) in Environmental Matrices: Occurrence, Fate, Health Impact, Physio-Chemical and Bioremediation Technology. Environ. Pollut. 2022, 302, 119061. https://doi.org/10.1016/j.envpol.2022.119061.
- 16.
Chmelová, D.; Ondrejovič, M.; Miertuš, S. Laccases as Effective Tools in the Removal of Pharmaceutical Products from Aquatic Systems. Life 2024, 14, 230. https://doi.org/10.3390/life14020230.
- 17.
Lopes, J.M.; Marques-da-Silva, D.; Videira, P.Q.; et al. Comparison of Laccases and Hemeproteins Systems in Bioremediation of Organic Pollutants. Curr. Protein Pept. Sci. 2022, 23, 402–423. https://doi.org/10.2174/1389203723666220704090416.
- 18.
Sellami, K.; Couvert, A.; Nasrallah, N.; et al. Peroxidase Enzymes as Green Catalysts for Bioremediation and Biotechnological Applications: A Review. Sci. Total Environ. 2022, 806, 150500. https://doi.org/10.1016/j.scitotenv.2021.150500.
- 19.
Basumatary, D.; Yadav, H.S.; Yadav, M. The Role of Peroxidases in the Bioremediation of Organic Pollutants. Nat. Prod. J. 2023, 13, 60–77. https://doi.org/10.2174/2210315512666220410132847.
- 20.
Arrighi, F. New Prospectives on the Benzo[b]Thiophene-3-Ole Scaffold: Design, Synthesis, and Biological Evaluation of Novel Monoamine Oxidase Inhibitors & Photocatalytic Functionalization of Dehydroalanine-Derived Peptides in Batch and Flow. Available online: https://iris.uniroma1.it/handle/11573/1730176 (accessed on 10 May 2025).
- 21.
Mokhosoev, I.M.; Astakhov, D.V.; Terentiev, A.A.; et al. Cytochrome P450 Monooxygenase Systems: Diversity and Plasticity for Adaptive Stress Response. Prog. Biophys. Mol. Biol. 2024, 193, 19–34. https://doi.org/10.1016/j.pbiomolbio.2024.09.003.
- 22.
Li, Y.; Mu, Z.; Yuan, Y.; et al. An Enzymatic Activity Regulation-Based Clusterzyme Sensor Array for High-Throughput Identification of Heavy Metal Ions. J. Hazard. Mater. 2023, 454, 131501. https://doi.org/10.1016/j.jhazmat.2023.131501.
- 23.
Sharma, P.; Singh, S.P.; Parakh, S.K.; et al. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered 2022, 13, 4923–4938. https://doi.org/10.1080/21655979.2022.2037273.
- 24.
Sethi, S. Phytochelatins: Heavy Metal Detoxifiers in Plants. In Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment; Shah, M.P., Ed.; Springer Nature: Singapore, 2023; pp. 361–379. ISBN 978-981-9925-98-8.
- 25.
Huang, L.; Jin, Y.; Zhou, D.; et al. A Review of the Role of Extracellular Polymeric Substances (EPS) in Wastewater Treatment Systems. Int. J. Environ. Res. Public Health 2022, 19, 12191. https://doi.org/10.3390/ijerph191912191.
- 26.
Mohajan, H.K. Plastic Pollution: A Potential Threat on Health and Environment. Stud. Soc. Sci. Humanit. 2025, 4, 25–30.
- 27.
Han, Y.; Wang, R.; Wang, D.; et al. Enzymatic Degradation of Synthetic Plastics by Hydrolases/Oxidoreductases. Int. Biodeterior. Biodegrad. 2024, 189, 105746. https://doi.org/10.1016/j.ibiod.2024.105746.
- 28.
Khairul Anuar, N.F.S.; Huyop, F.; Ur-Rehman, G.; et al. An Overview into Polyethylene Terephthalate (PET) Hydrolases and Efforts in Tailoring Enzymes for Improved Plastic Degradation. Int. J. Mol. Sci. 2022, 23, 12644. https://doi.org/10.3390/ijms232012644.
- 29.
Liu, Z.; Chang, S.H.; Mailhot, G. Emerging Biochemical Conversion for Plastic Waste Management: A Review. Molecules 2025, 30, 1255. https://doi.org/10.3390/molecules30061255.
- 30.
Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; et al. A Critical Review of Microplastics in Aquatic Ecosystems: Degradation Mechanisms and Removing Strategies. Environ. Sci. Ecotechnology 2024, 21, 100427. https://doi.org/10.1016/j.ese.2024.100427.
- 31.
Sodhi, A.S.; Bhatia, S.; Batra, N. Laccase: Sustainable Production Strategies, Heterologous Expression and Potential Biotechnological Applications. Int. J. Biol. Macromol. 2024, 280, 135745. https://doi.org/10.1016/j.ijbiomac.2024.135745.
- 32.
Vijayanand, M.; Ramakrishnan, A.; Subramanian, R.; et al. Polyaromatic Hydrocarbons (PAHs) in the Water Environment: A Review on Toxicity, Microbial Biodegradation, Systematic Biological Advancements, and Environmental Fate. Environ. Res. 2023, 227, 115716. https://doi.org/10.1016/j.envres.2023.115716.
- 33.
Wan, L.; Jiang, M.; Cheng, D.; et al. Continuous Flow Technology-a Tool for Safer Oxidation Chemistry. React. Chem. Eng. 2022, 7, 490–550. https://doi.org/10.1039/D1RE00520K.
- 34.
Victorino da Silva Amatto, I.; Gonsales da Rosa-Garzon, N.; Antônio de Oliveira Simões, F.; et al. Enzyme Engineering and Its Industrial Applications. Biotechnol. Appl. Biochem. 2022, 69, 389–409. https://doi.org/10.1002/bab.2117.
- 35.
Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; et al. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega 2023, 8, 5184–5196. https://doi.org/10.1021/acsomega.2c07560.
- 36.
Tadesse, M.; Liu, Y. Recent Advances in Enzyme Immobilization: The Role of Artificial Intelligence, Novel Nanomaterials, and Dynamic Carrier Systems. Catalysts 2025, 15, 571. https://doi.org/10.3390/catal15060571.
- 37.
Tang, C.; Wang, L.; Zang, L.; et al. On-Demand Biomanufacturing through Synthetic Biology Approach. Mater. Today Bio 2023, 18, 100518. https://doi.org/10.1016/j.mtbio.2022.100518.
- 38.
Liang, Y.; Ma, A.; Zhuang, G. Construction of Environmental Synthetic Microbial Consortia: Based on Engineering and Ecological Principles. Front. Microbiol. 2022, 13, 829717. https://doi.org/10.3389/fmicb.2022.829717.
- 39.
Ashokkumar, V.; Flora, G.; Venkatkarthick, R.; et al. Advanced Technologies on the Sustainable Approaches for Conversion of Organic Waste to Valuable Bioproducts: Emerging Circular Bioeconomy Perspective. Fuel 2022, 324, 124313. https://doi.org/10.1016/j.fuel.2022.124313.
- 40.
Ekeoma, B.C.; Ekeoma, L.N.; Yusuf, M.; et al. Recent Advances in the Biocatalytic Mitigation of Emerging Pollutants: A Comprehensive Review. J. Biotechnol. 2023, 369, 14–34. https://doi.org/10.1016/j.jbiotec.2023.05.003.
- 41.
Zafar, M.G.; Mumtaz, A.; Akbar, A.; et al. Distinctive Role of Enzymes in Textile Industry. In Enzymes in Textile Processing: A Climate Changes Mitigation Approach: Textile Industry, Enzymes, and SDGs; Arshad, M., Ed.; Springer Nature: Singapore, 2025; pp. 1–17. ISBN 978-981-9780-58-7.
- 42.
Rezvanian, K.; Shahan, H.T.; Ghofrani, D.; et al. Innovative Manufacturing and Recycling Approaches for Multilayer Polymer Packaging: A Comprehensive Review. Polym. Plast. Technol. Mater. 2025, 64, 1441–1474. https://doi.org/10.1080/25740881.2025.2470852.