- 1.
Franco-Luján, V.A.; Montejo-Alvaro, F.; Ramírez-Arellanes, S.; et al. Nanomaterial-Reinforced Portland-Cement-Based Materials: A Review. Nanomaterials 2023, 13, 1383. https://doi.org/10.3390/nano13081383.
- 2.
Liu, C.; Huang, X.; Wu, Y.-Y.; et al. Advance on the Dispersion Treatment of Graphene Oxide and the Graphene Oxide Modified Cement-Based Materials. Nanotechnol. Rev. 2021, 10, 34–49. https://doi.org/10.1515/ntrev-2021-0003.
- 3.
Han, B.; Zhang, L.; Zeng, S.; et al. Nano-Core Effect in Nano-Engineered Cementitious Composites. Compos. Part Appl. Sci. Manuf. 2017, 95, 100–109. https://doi.org/10.1016/j.compositesa.2017.01.008.
- 4.
Paul, S.C.; Van Rooyen, A.S.; Van Zijl, G.P.A.G.; et al. Properties of Cement-Based Composites Using Nanoparticles: A Comprehensive Review. Constr. Build. Mater. 2018, 189, 1019–1034. https://doi.org/10.1016/j.conbuildmat.2018.09.062.
- 5.
Yang, M.; Chen, L.; Lai, J.; et al. Advancing Environmental Sustainability in Construction through Innovative Low-Carbon, High-Performance Cement-Based Composites: A Review. Mater. Today Sustain. 2024, 26, 100712. https://doi.org/10.1016/j.mtsust.2024.100712.
- 6.
Lu, S.; Gong, C.; Yu, J.; et al. Reinforcing Mechanisms Review of the Graphene Oxide on Cement Composites. Nanotechnol. Rev. 2024, 13, 20240120. https://doi.org/10.1515/ntrev-2024-0120.
- 7.
Hou, P.; Shi, J.; Prabakar, S.; et al. Effects of Mixing Sequences of Nanosilica on the Hydration and Hardening Properties of Cement-Based Materials. Constr. Build. Mater. 2020, 263, 120226. https://doi.org/10.1016/j.conbuildmat.2020.120226.
- 8.
Hsissou, R.; Seghiri, R.; Benzekri, Z.; et al. Polymer Composite Materials: A Comprehensive Review. Compos. Struct. 2021, 262, 113640. https://doi.org/10.1016/j.compstruct.2021.113640.
- 9.
Chen, J.; Gao, X. Thermal and Electrical Anisotropy of Polymer Matrix Composite Materials Reinforced with Graphene Nanoplatelets and Aluminum-Based Particles. Diam. Relat. Mater. 2019, 100, 107571. https://doi.org/10.1016/j.diamond.2019.107571.
- 10.
Datsyuk, V.; Trotsenko, S.; Trakakis, G.; et al. Thermal Properties Enhancement of Epoxy Resins by Incorporating Polybenzimidazole Nanofibers Filled with Graphene and Carbon Nanotubes as Reinforcing Material. Polym. Test. 2020, 82, 106317. https://doi.org/10.1016/j.polymertesting.2019.106317.
- 11.
Lin, L.; Ning, H.; Song, S.; et al. Flexible Electrochemical Energy Storage: The Role of Composite Materials. Compos. Sci. Technol. 2020, 192, 108102. https://doi.org/10.1016/j.compscitech.2020.108102.
- 12.
Gao, H.; Wang, J.; Chen, X.; et al. Nanoconfinement Effects on Thermal Properties of Nanoporous Shape-Stabilized Composite PCMs: A Review. Nano Energy 2018, 53, 769–797. https://doi.org/10.1016/j.nanoen.2018.09.007.
- 13.
Rashidi, Y.; Li, L.; Habibnejad Korayem, A. Biopolymer-Assisted Stable Halloysite Nanotubes Dispersion in Alkaline Environment and Their Application in Cementitious Composite. Cem. Concr. Res. 2024, 183, 107574. https://doi.org/10.1016/j.cemconres.2024.107574.
- 14.
Abhilash, P.P.; Nayak, D.K.; Sangoju, B.; et al. Effect of Nano-Silica in Concrete; a Review. Constr. Build. Mater. 2021, 278, 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347.
- 15.
Bautista-Gutierrez, K.P.; Herrera-May, A.L.; Santamaría-López, J.M.; et al. Recent Progress in Nanomaterials for Modern Concrete Infrastructure: Advantages and Challenges. Materials 2019, 12, 3548. https://doi.org/10.3390/ma12213548.
- 16.
Ramezani, M.; Dehghani, A.; Sherif, M.M. Carbon Nanotube Reinforced Cementitious Composites: A Comprehensive Review. Constr. Build. Mater. 2022, 315, 125100. https://doi.org/10.1016/j.conbuildmat.2021.125100.
- 17.
Zhao, L.; Guo, X.; Song, L.; et al. An Intensive Review on the Role of Graphene Oxide in Cement-Based Materials. Constr. Build. Mater. 2020, 241, 117939. https://doi.org/10.1016/j.conbuildmat.2019.117939.
- 18.
Bastos, G.; Patiño-Barbeito, F.; Patiño-Cambeiro, F.; et al. Admixtures in Cement-Matrix Composites for Mechanical Reinforcement, Sustainability, and Smart Features. Materials 2016, 9, 972. https://doi.org/10.3390/ma9120972.
- 19.
Chung, D.D.L. Composites Get Smart. Mater. Today 2002, 5, 30–35. https://doi.org/10.1016/S1369-7021(02)05140-4.
- 20.
Njuguna, J.; Vanli, O.A.; Liang, R. A Review of Spectral Methods for Dispersion Characterization of Carbon Nanotubes in Aqueous Suspensions. J. Spectrosc. 2015, 2015, 463156. https://doi.org/10.1155/2015/463156.
- 21.
Zhu, W.; Feng, Q.; Luo, Q.; et al. Effects of PCE on the Dispersion of Cement Particles and Initial Hydration. Materials 2021, 14, 3195. https://doi.org/10.3390/ma14123195.
- 22.
Lin, Y.; Du, H. Graphene Reinforced Cement Composites: A Review. Constr. Build. Mater. 2020, 265, 120312. https://doi.org/10.1016/j.conbuildmat.2020.120312.
- 23.
Dong, S.; Li, L.; Ashour, A.; et al. Self-Assembled 0D/2D Nano Carbon Materials Engineered Smart and Multifunctional Cement-Based Composites. Constr. Build. Mater. 2021, 272, 121632. https://doi.org/10.1016/j.conbuildmat.2020.121632.
- 24.
Alafogianni, P.; Dassios, K.; Farmaki, S.; et al. On the Efficiency of UV–Vis Spectroscopy in Assessing the Dispersion Quality in Sonicated Aqueous Suspensions of Carbon Nanotubes. Colloids Surf. Physicochem. Eng. Asp. 2016, 495, 118–124. https://doi.org/10.1016/j.colsurfa.2016.01.053.
- 25.
Goyal, R.K. Nanomaterials and Nanocomposites: Synthesis, Properties, Characterization Techniques, and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 350. ISBN 978-1-315-15328-5.
- 26.
Rodriguez-Loya, J.; Lerma, M.; Gardea-Torresdey, J.L. Dynamic Light Scattering and Its Application to Control Nanoparticle Aggregation in Colloidal Systems: A Review. Micromachines 2023, 15, 24. https://doi.org/10.3390/mi15010024.
- 27.
Du, Y.; Yang, J.; Thomas, B.S.; et al. Hybrid Graphene Oxide/Carbon Nanotubes Reinforced Cement Paste: An Investigation on Hybrid Ratio. Constr. Build. Mater. 2020, 261, 119815. https://doi.org/10.1016/j.conbuildmat.2020.119815.
- 28.
Jagadeesh, P. Efficacy of Graphene Oxide-Based Nanomaterials in Customized Cement Mixtures, a Review of Recent Research Trends. Hybrid Adv. 2025, 10, 100428. https://doi.org/10.1016/j.hybadv.2025.100428.
- 29.
Kauling, A.P.; Seefeldt, A.T.; Pisoni, D.P.; et al. The Worldwide Graphene Flake Production. Adv. Mater. 2018, 30, 1803784. https://doi.org/10.1002/adma.201803784.
- 30.
Lu, D.; Zhong, J. Carbon-Based Nanomaterials Engineered Cement Composites: A Review. J. Infrastruct. Preserv. Resil. 2022, 3, 2. https://doi.org/10.1186/s43065-021-00045-y.
- 31.
Bantie, Z.; Tezera, A.; Abera, D.; et al. Nanoclays as Fillers for Performance Enhancement in Building and Construction Industries: State of the Art and Future Trends. In Developments in Clay Science and Construction Techniques, Almusaed, A., Almssad, A., Yitmen, I., Eds.; IntechOpen: London, UK, 2024. ISBN 978-1-83769-607-9.
- 32.
Olafusi, O.S.; Sadiku, E.R.; Snyman, J.; et al. Application of Nanotechnology in Concrete and Supplementary Cementitious Materials: A Review for Sustainable Construction. SN Appl. Sci. 2019, 1, 580. https://doi.org/10.1007/s42452-019-0600-7.
- 33.
Kishore, K.; Pandey, A.; Wagri, N.K.; et al. Technological Challenges in Nanoparticle-Modified Geopolymer Concrete: A Comprehensive Review on Nanomaterial Dispersion, Characterization Techniques and Its Mechanical Properties. Case Stud. Constr. Mater. 2023, 19, e02265. https://doi.org/10.1016/j.cscm.2023.e02265.
- 34.
Yaghobian, M.; Whittleston, G. A Critical Review of Carbon Nanomaterials Applied in Cementitious Composites—A Focus on Mechanical Properties and Dispersion Techniques. Alex. Eng. J. 2022, 61, 3417–3433. https://doi.org/10.1016/j.aej.2021.08.053.
- 35.
Lyashenko, D.A.; Perfilov, V.A.; Nikolaev, M.E.; et al. Modification of Fine Concrete with Carbon Nanotubes. In Proceedings of the 7th International Conference on Construction, Architecture and Technosphere Safety, Sochi, Russia, 8–14 September 2024; Radionov, A.A., Ulrikh, D.V., Timofeeva, S.S., et al., Eds.; Lecture Notes in Civil Engineering; Springer Nature Switzerland: Cham, Switzerland, 2024; Volume 400, pp. 132–142. ISBN 978-3-031-47809-3.
- 36.
Chen, J.; Akono, A.-T. Influence of Multi-Walled Carbon Nanotubes on the Hydration Products of Ordinary Portland Cement Paste. Cem. Concr. Res. 2020, 137, 106197. https://doi.org/10.1016/j.cemconres.2020.106197.
- 37.
Fu, Q.; Zhao, X.; Zhang, Z.; et al. Effects of Nanosilica on Microstructure and Durability of Cement-Based Materials. Powder Technol. 2022, 404, 117447. https://doi.org/10.1016/j.powtec.2022.117447.
- 38.
Jiang, Z.; Atilhan, M.; Ozbulut, O.E. Exploring Optimal Dispersion Process Parameters for Fabrication of Graphene-Reinforced Cement Composites. Constr. Build. Mater. 2023, 372, 130805. https://doi.org/10.1016/j.conbuildmat.2023.130805.
- 39.
Zhong, J.; Sun, W.; Wei, Q.; et al. Efficient and Scalable Synthesis of Highly Aligned and Compact Two-Dimensional Nanosheet Films with Record Performances. Nat. Commun. 2018, 9, 3484. https://doi.org/10.1038/s41467-018-05723-2.
- 40.
Wang, M.; Yao, H.; Wang, R.; et al. Chemically Functionalized Graphene Oxide as the Additive for Cement–Matrix Composite with Enhanced Fluidity and Toughness. Constr. Build. Mater. 2017, 150, 150–156. https://doi.org/10.1016/j.conbuildmat.2017.05.217.
- 41.
Lotya, M.; King, P.J.; Khan, U.; et al. High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano 2010, 4, 3155–3162. https://doi.org/10.1021/nn1005304.
- 42.
Papanikolaou, I.; de Souza, L.R.; Litina, C.; et al. Investigation of the Dispersion of Multi-Layer Graphene Nanoplatelets in Cement Composites Using Different Superplasticiser Treatments. Constr. Build. Mater. 2021, 293, 123543. https://doi.org/10.1016/j.conbuildmat.2021.123543.
- 43.
Qin, W.; Guodong, Q.; Dafu, Z.; et al. Influence of the Molecular Structure of a Polycarboxylate Superplasticiser on the Dispersion of Graphene Oxide in Cement Pore Solutions and Cement-Based Composites. Constr. Build. Mater. 2021, 272, 121969. https://doi.org/10.1016/j.conbuildmat.2020.121969.
- 44.
Hossain, S.S.; Bae, C.-J.; Roy, P.K. Recent Progress of Wastes Derived Nano-Silica: Synthesis, Properties, and Applications. J. Clean. Prod. 2022, 377, 134418. https://doi.org/10.1016/j.jclepro.2022.134418.
- 45.
Ahmed, H.U.; Mohammed, A.S.; Faraj, R.H.; et al. Compressive Strength of Geopolymer Concrete Modified with Nano-Silica: Experimental and Modeling Investigations. Case Stud. Constr. Mater. 2022, 16, e01036. https://doi.org/10.1016/j.cscm.2022.e01036.
- 46.
Rashad, A.M. Effect of Nanoparticles on the Properties of Geopolymer Materials. Mag. Concr. Res. 2019, 71, 1283–1301. https://doi.org/10.1680/jmacr.18.00289.
- 47.
Gosiamemang, T.; Heng, J.Y.Y. Sodium Hydroxide Catalysed Silica Sol-Gel Synthesis: Physicochemical Properties of Silica Nanoparticles and Their Post-Grafting Using C8 and C18 Alkyl-Organosilanes. Powder Technol. 2023, 417, 118237. https://doi.org/10.1016/j.powtec.2023.118237.
- 48.
Singh, L.P.; Karade, S.R.; Bhattacharyya, S.K.; et al. Beneficial Role of Nanosilica in Cement Based Materials—A Review. Constr. Build. Mater. 2013, 47, 1069–1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052.
- 49.
Smirnova, O.M.; Menéndez Pidal De Navascués, I.; Mikhailevskii, V.R.; et al. Sound-Absorbing Composites with Rubber Crumb from Used Tires. Appl. Sci. 2021, 11, 7347. https://doi.org/10.3390/app11167347.
- 50.
Yakovlev, G.; Polyanskikh, I.; Gordina, A.; et al. Influence of Sulphate Attack on Properties of Modified Cement Composites. Appl. Sci. 2021, 11, 8509. https://doi.org/10.3390/app11188509.
- 51.
Ahmad, J.; Burduhos-Nergis, D.D.; Arbili, M.M.; et al. A Review on Failure Modes and Cracking Behaviors of Polypropylene Fibers Reinforced Concrete. Buildings 2022, 12, 1951. https://doi.org/10.3390/buildings12111951.
- 52.
Maglad, A.M.; Zaid, O.; Arbili, M.M.; et al. A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide. Buildings 2022, 12, 1066. https://doi.org/10.3390/buildings12081066.
- 53.
Barbhuiya, G.H.; Moiz, M.A.; Hasan, S.D.; et al. Effects of the Nanosilica Addition on Cement Concrete: A Review. Mater. Today Proc. 2020, 32, 560–566. https://doi.org/10.1016/j.matpr.2020.02.143.
- 54.
Iqbal, S.; Pan, G.; Meng, H.; et al. Surfactant-Free Synthesis of Highly Monodispersed in Situ Grown Nano-Silica on Modified Fly Ash and Its Impact on the Properties of Cement Pastes. Constr. Build. Mater. 2024, 425, 136043. https://doi.org/10.1016/j.conbuildmat.2024.136043.
- 55.
Shahrajabian, F.; Behfarnia, K. The Effects of Nano Particles on Freeze and Thaw Resistance of Alkali-Activated Slag Concrete. Constr. Build. Mater. 2018, 176, 172–178. https://doi.org/10.1016/j.conbuildmat.2018.05.033.
- 56.
Sharkawi, A.M.; Abd-Elaty, M.A.; Khalifa, O.H. Synergistic Influence of Micro-Nano Silica Mixture on Durability Performance of Cementious Materials. Constr. Build. Mater. 2018, 164, 579–588. https://doi.org/10.1016/j.conbuildmat.2018.01.013.
- 57.
Erdem, S.; Hanbay, S.; Güler, Z. Micromechanical Damage Analysis and Engineering Performance of Concrete with Colloidal Nano-Silica and Demolished Concrete Aggregates. Constr. Build. Mater. 2018, 171, 634–642. https://doi.org/10.1016/j.conbuildmat.2018.03.197.
- 58.
Kawashima, S.; Wang, K.; Ferron, R.D.; et al. A Review of the Effect of Nanoclays on the Fresh and Hardened Properties of Cement-Based Materials. Cem. Concr. Res. 2021, 147, 106502. https://doi.org/10.1016/j.cemconres.2021.106502.
- 59.
Abdalla, J.A.; Thomas, B.S.; Hawileh, R.A.; et al. Influence of Nano-TiO2, Nano-Fe2O3, Nanoclay and Nano-CaCO3 on the Properties of Cement/Geopolymer Concrete. Clean. Mater. 2022, 4, 100061. https://doi.org/10.1016/j.clema.2022.100061.
- 60.
Shebl, S.S.; Allie, L.; Morsy, M.S.; et al. Mechanical Behavior of Activated Nano Silicate Filled Cement Binders. J. Mater. Sci. 2009, 44, 1600–1606. https://doi.org/10.1007/s10853-008-3214-9.
- 61.
Gaharwar, A.K.; Cross, L.M.; Peak, C.W.; et al. 2D Nanoclay for Biomedical Applications: Regenerative Medicine, Therapeutic Delivery, and Additive Manufacturing. Adv. Mater. 2019, 31, 1900332. https://doi.org/10.1002/adma.201900332.
- 62.
Hakamy, A.; Shaikh, F.U.A.; Low, I.M. Characteristics of Nanoclay and Calcined Nanoclay-Cement Nanocomposites. Compos. Part B Eng. 2015, 78, 174–184. https://doi.org/10.1016/j.compositesb.2015.03.074.
- 63.
Niu, X.-J.; Li, Q.-B.; Hu, Y.; et al. Properties of Cement-Based Materials Incorporating Nano-Clay and Calcined Nano-Clay: A Review. Constr. Build. Mater. 2021, 284, 122820. https://doi.org/10.1016/j.conbuildmat.2021.122820.
- 64.
Guo, F.; Aryana, S.; Han, Y.; et al. A Review of the Synthesis and Applications of Polymer–Nanoclay Composites. Appl. Sci. 2018, 8, 1696. https://doi.org/10.3390/app8091696.
- 65.
Rahmanpour, A.; Farahpour, M.R.; Shapouri, R.; et al. Synthesis and Characterization of Alumina-Based Nanocomposites of TiO2/Al2O3/Chitosan with Antibacterial Properties Accelarate Healing of Infected Excision Wounds. Colloids Surf. Physicochem. Eng. Asp. 2022, 644, 128839. https://doi.org/10.1016/j.colsurfa.2022.128839.
- 66.
Gholizadeh, Z.; Aliannezhadi, M.; Ghominejad, M.; et al. High Specific Surface Area γ-Al2O3 Nanoparticles Synthesized by Facile and Low-Cost Co-Precipitation Method. Sci. Rep. 2023, 13, 6131. https://doi.org/10.1038/s41598-023-33266-0.
- 67.
Szymanowski, J.; Sadowski, Ł. The Development of Nanoalumina-Based Cement Mortars for Overlay Applications in Concrete Floors. Materials 2019, 12, 3465. https://doi.org/10.3390/ma12213465.
- 68.
Zhan, B.J.; Xuan, D.X.; Poon, C.S. The Effect of Nanoalumina on Early Hydration and Mechanical Properties of Cement Pastes. Constr. Build. Mater. 2019, 202, 169–176. https://doi.org/10.1016/j.conbuildmat.2019.01.022.
- 69.
Ayub, M.; Othman, M.H.D.; Khan, I.U.; et al. Promoting Sustainable Cleaner Production Paradigms in Palm Oil Fuel Ash as an Eco-Friendly Cementitious Material: A Critical Analysis. J. Clean. Prod. 2021, 295, 126296. https://doi.org/10.1016/j.jclepro.2021.126296.
- 70.
Huseien, G.F.; Shah, K.W.; Sam, A.R.M. Sustainability of Nanomaterials Based Self-Healing Concrete: An All-Inclusive Insight. J. Build. Eng. 2019, 23, 155–171. https://doi.org/10.1016/j.jobe.2019.01.032.
- 71.
Metaxa, Z.S.; Tolkou, A.K.; Efstathiou, S.; et al. Nanomaterials in Cementitious Composites: An Update. Molecules 2021, 26, 1430. https://doi.org/10.3390/molecules26051430.
- 72.
Xu, K.; Yang, J.; He, H.; et al. Influences of Additives on the Rheological Properties of Cement Composites: A Review of Material Impacts. Materials 2025, 18, 1753. https://doi.org/10.3390/ma18081753.
- 73.
Liu, C.; Chen, F.; Wu, Y.; et al. Research Progress on Individual Effect of Graphene Oxide in Cement-Based Materials and Its Synergistic Effect with Other Nanomaterials. Nanotechnol. Rev. 2021, 10, 1208–1235. https://doi.org/10.1515/ntrev-2021-0080.
- 74.
Xu, Z.; Bai, Z.; Wu, J.; et al. Microstructural Characteristics and Nano-Modification of Interfacial Transition Zone in Concrete: A Review. Nanotechnol. Rev. 2022, 11, 2078–2100. https://doi.org/10.1515/ntrev-2022-0125.
- 75.
Ahmad, J.; Zhou, Z. Properties of Concrete with Addition Carbon Nanotubes: A Review. Constr. Build. Mater. 2023, 393, 132066. https://doi.org/10.1016/j.conbuildmat.2023.132066.
- 76.
Singh, G.; Saini, B. Nanomaterial in Cement Industry: A Brief Review. Innov. Infrastruct. Solut. 2022, 7, 45. https://doi.org/10.1007/s41062-021-00649-z.
- 77.
Kaid, N.; Cyr, M.; Julien, S.; et al. Durability of Concrete Containing a Natural Pozzolan as Defined by a Performance-Based Approach. Constr. Build. Mater. 2009, 23, 3457–3467. https://doi.org/10.1016/j.conbuildmat.2009.08.002.
- 78.
Chintalapudi, K.; Rao Pannem, R.M. Strength Properties of Graphene Oxide Cement Composites. Mater. Today Proc. 2021, 45, 3971–3975. https://doi.org/10.1016/j.matpr.2020.08.369.
- 79.
Heikal, M.; Abdel-Gawwad, H.A.; Ababneh, F.A. Positive Impact Performance of Hybrid Effect of Nano-Clay and Silica Nano-Particles on Composite Cements. Constr. Build. Mater. 2018, 190, 508–516. https://doi.org/10.1016/j.conbuildmat.2018.09.163.
- 80.
Alani, N.Y.; Al-Jumaily, I.A.; Hilal, N. Effect of Nanoclay and Burnt Limestone Powder on Fresh and Hardened Properties of Self-Compacting Concrete. Nanotechnol. Environ. Eng. 2021, 6, 20. https://doi.org/10.1007/s41204-021-00114-3.
- 81.
Alobaidi, Y.M.; Hilal, N.N.; Faraj, R.H. An Experimental Investigation on the Nano-Fly Ash Preparation and Its Effects on the Performance of Self-Compacting Concrete at Normal and Elevated Temperatures. Nanotechnol. Environ. Eng. 2021, 6, 2. https://doi.org/10.1007/s41204-020-00098-6.
- 82.
Amin, M.; Abu El-Hassan, K. Effect of Using Different Types of Nano Materials on Mechanical Properties of High Strength Concrete. Constr. Build. Mater. 2015, 80, 116–124. https://doi.org/10.1016/j.conbuildmat.2014.12.075.
- 83.
Knop, Y.; Peled, A. Setting Behavior of Blended Cement with Limestone: Influence of Particle Size and Content. Mater. Struct. 2016, 49, 439–452. https://doi.org/10.1617/s11527-014-0509-y.
- 84.
Muhd Norhasri, M.S.; Hamidah, M.S.; Mohd Fadzil, A.; et al. Inclusion of Nano Metakaolin as Additive in Ultra High Performance Concrete (UHPC). Constr. Build. Mater. 2016, 127, 167–175. https://doi.org/10.1016/j.conbuildmat.2016.09.127.
- 85.
Alharbi, Y.R.; Abadel, A.A.; Mayhoub, O.A.; et al. Effect of Using Available Metakaoline and Nano Materials on the Behavior of Reactive Powder Concrete. Constr. Build. Mater. 2021, 269, 121344. https://doi.org/10.1016/j.conbuildmat.2020.121344.
- 86.
Irshidat, M.R.; Al-Saleh, M.H. Thermal Performance and Fire Resistance of Nanoclay Modified Cementitious Materials. Constr. Build. Mater. 2018, 159, 213–219. https://doi.org/10.1016/j.conbuildmat.2017.10.127.
- 87.
Oh, J.-A.; Zhuge, Y.; Araby, S.; et al. Cement Nanocomposites Containing Montmorillonite Nanosheets Modified with Surfactants of Various Chain Lengths. Cem. Concr. Compos. 2021, 116, 103894. https://doi.org/10.1016/j.cemconcomp.2020.103894.
- 88.
Garces-Vargas, J.F.; Díaz-Cardenas, Y.; Martirena Hernandez, J.F. Evaluation of the Durability of Concrete with the Use of Calcined Clays and Limestone in Salinas, Ecuador. Minerals 2024, 14, 460. https://doi.org/10.3390/min14050460.
- 89.
Xiaoyu, G.; Yingfang, F.; Haiyang, L. The Compressive Behavior of Cement Mortar with the Addition of Nano Metakaolin. Nanomater. Nanotechnol. 2018, 8, 184798041875559. https://doi.org/10.1177/1847980418755599.
- 90.
Hamed, N.; El-Feky, M.S.; Kohail, M.; et al. Effect of Nano-Clay de-Agglomeration on Mechanical Properties of Concrete. Constr. Build. Mater. 2019, 205, 245–256. https://doi.org/10.1016/j.conbuildmat.2019.02.018.
- 91.
Assaedi, H.; Shaikh, F.U.A.; Low, I.M. Effect of Nanoclay on Durability and Mechanical Properties of Flax Fabric Reinforced Geopolymer Composites. J. Asian Ceram. Soc. 2017, 5, 62–70. https://doi.org/10.1016/j.jascer.2017.01.003.
- 92.
Rezania, M.; Panahandeh, M.; Razavi, N.; et al. Experimental Study of the Simultaneous Effect of Nano-Silica and Nano-Carbon Black on Permeability and Mechanical Properties of the Concrete. Theor. Appl. Fract. Mech. 2019, 104, 102391. https://doi.org/10.1016/j.tafmec.2019.102391.
- 93.
Kumar, S.; Kumar, A.; Kujur, J. Influence of Nanosilica on Mechanical and Durability Properties of Concrete. Proc. Inst. Civ. Eng. Struct. Build. 2019, 172, 781–788. https://doi.org/10.1680/jstbu.18.00080.
- 94.
Li, L.G.; Zheng, J.Y.; Ng, P.L.; et al. Cementing Efficiencies and Synergistic Roles of Silica Fume and Nano-Silica in Sulphate and Chloride Resistance of Concrete. Constr. Build. Mater. 2019, 223, 965–975. https://doi.org/10.1016/j.conbuildmat.2019.07.241.
- 95.
Aydın, A.C.; Nasl, V.J.; Kotan, T. The Synergic Influence of Nano-Silica and Carbon Nano Tube on Self-Compacting Concrete. J. Build. Eng. 2018, 20, 467–475. https://doi.org/10.1016/j.jobe.2018.08.013.
- 96.
Chekravarty, D.; Alapati, M.; Sravana, P.; et al. Experimental Investigations on Durability Properties Nano-Silica Based Concrete. Mater. Today Proc. 2022, 51, 2176–2184. https://doi.org/10.1016/j.matpr.2021.11.126.
- 97.
Elkady, H.M.; Yasien, A.M.; Elfeky, M.S.; et al. Assessment of Mechanical Strength of Nano Silica Concrete (NSC) Subjected to Elevated Temperatures. J. Struct. Fire Eng. 2019, 10, 90–109. https://doi.org/10.1108/JSFE-10-2017-0041.
- 98.
Dhairiyasamy, R.; Gabiriel, D.; Varshney, D.; et al. Optimizing Nanomaterial Dosages in Concrete for Structural Applications Using Experimental Design Techniques. Sci. Rep. 2025, 15, 22375. https://doi.org/10.1038/s41598-025-05265-w.
- 99.
Farzadnia, N.; Abang Ali, A.A.; Demirboga, R. Characterization of High Strength Mortars with Nano Alumina at Elevated Temperatures. Cem. Concr. Res. 2013, 54, 43–54. https://doi.org/10.1016/j.cemconres.2013.08.003.
- 100.
Chu, H.; Wang, Q.; Gao, L.; et al. An Approach of Producing Ultra-High-Performance Concrete with High Elastic Modulus by Nano-Al2O3: A Preliminary Study. Materials 2022, 15, 8118. https://doi.org/10.3390/ma15228118.
- 101.
Muzenski, S.; Flores-Vivian, I.; Sobolev, K. Ultra-High Strength Cement-Based Composites Designed with Aluminum Oxide Nano-Fibers. Constr. Build. Mater. 2019, 220, 177–186. https://doi.org/10.1016/j.conbuildmat.2019.05.175.
- 102.
Muzenski, S.; Flores-Vivian, I.; Farahi, B.; et al. Towards Ultrahigh Performance Concrete Produced with Aluminum Oxide Nanofibers and Reduced Quantities of Silica Fume. Nanomaterials 2020, 10, 2291. https://doi.org/10.3390/nano10112291.
- 103.
Shaikh, F.U.A.; Hosan, A. Effect of Nano Alumina on Compressive Strength and Microstructure of High Volume Slag and Slag-Fly Ash Blended Pastes. Front. Mater. 2019, 6, 90. https://doi.org/10.3389/fmats.2019.00090.
- 104.
Guo, Z.; Hou, P.; Xu, Z.; et al. Sulfate Attack Resistance of Tricalcium Silicate Modified with Nano-Silica and Supplementary Cementitious Materials. Constr. Build. Mater. 2022, 321, 126332. https://doi.org/10.1016/j.conbuildmat.2022.126332.
- 105.
Huang, K.; Xie, J.; Wang, R.; et al. Effects of the Combined Usage of Nanomaterials and Steel Fibres on the Workability, Compressive Strength, and Microstructure of Ultra-High Performance Concrete. Nanotechnol. Rev. 2021, 10, 304–317. https://doi.org/10.1515/ntrev-2021-0029.
- 106.
Liu, C.; Su, X.; Wu, Y.; et al. Effect of Nano-Silica as Cementitious Materials-Reducing Admixtures on the Workability, Mechanical Properties and Durability of Concrete. Nanotechnol. Rev. 2021, 10, 1395–1409. https://doi.org/10.1515/ntrev-2021-0097.
- 107.
Huang, J.; Wang, Z.; Li, D.; et al. Effect of Nano-SiO2/PVA Fiber on Sulfate Resistance of Cement Mortar Containing High-Volume Fly Ash. Nanomaterials 2022, 12, 323. https://doi.org/10.3390/nano12030323.
- 108.
Rajput, B.; Pimplikar, S.S. Influence of Nano Silica on Durability Properties of Concrete. Innov. Infrastruct. Solut. 2022, 7, 180. https://doi.org/10.1007/s41062-022-00777-0.
- 109.
Abna, A.; Mazloom, M. Flexural Properties of Fiber Reinforced Concrete Containing Silica Fume and Nano-Silica. Mater. Lett. 2022, 316, 132003. https://doi.org/10.1016/j.matlet.2022.132003.
- 110.
Yang, Z.; Sui, S.; Wang, L.; et al. Improving the Chloride Binding Capacity of Cement Paste by Adding Nano-Al2O3: The Cases of Blended Cement Pastes. Constr. Build. Mater. 2020, 232, 117219. https://doi.org/10.1016/j.conbuildmat.2019.117219.
- 111.
Jalali Mosallam, S.; Pesaran Behbahani, H.; Shahpari, M.; et al. The Effect of Carbon Nanotubes on Mechanical Properties of Structural Lightweight Concrete Using LECA Aggregates. Structures 2022, 35, 1204–1218. https://doi.org/10.1016/j.istruc.2021.09.003.
- 112.
Piao, R.; Cui, Z.; Jeong, J.-W.; et al. Optimal Multi-Walled Carbon Nanotube Dosage for Improving the Mechanical and Thermoelectric Characteristics of Ultra-High-Performance Fiber-Reinforced Concrete. Constr. Build. Mater. 2025, 462, 139927. https://doi.org/10.1016/j.conbuildmat.2025.139927.
- 113.
Ramezani, M.; Kim, Y.H.; Sun, Z.; et al. Influence of Carbon Nanotubes on Properties of Cement Mortars Subjected to Alkali-Silica Reaction. Cem. Concr. Compos. 2022, 131, 104596. https://doi.org/10.1016/j.cemconcomp.2022.104596.
- 114.
Malayali, A.B.; Venkatesh, R.; Seikh, A.H.; et al. Investigation and Performance Analysis of Eco-Friendly Coco Fiber Concrete Hybridized with CNT Blend. Heliyon 2024, 10, e33031. https://doi.org/10.1016/j.heliyon.2024.e33031.
- 115.
Huang, H.; Teng, L.; Gao, X.; et al. Effect of Carbon Nanotube and Graphite Nanoplatelet on Composition, Structure, and Nano-Mechanical Properties of C-S-H in UHPC. Cem. Concr. Res. 2022, 154, 106713. https://doi.org/10.1016/j.cemconres.2022.106713.
- 116.
Han, G.; Dai, S.; Zhang, J.; et al. Study on the Workability and Early Mechanical Properties of Carbon Nanotube-Coated Fly Ash Modified Cement-Based Grouting Materials. Constr. Build. Mater. 2024, 439, 137327. https://doi.org/10.1016/j.conbuildmat.2024.137327.
- 117.
Carriço, A.; Bogas, J.A.; Hawreen, A.; et al. Durability of Multi-Walled Carbon Nanotube Reinforced Concrete. Constr. Build. Mater. 2018, 164, 121–133. https://doi.org/10.1016/j.conbuildmat.2017.12.221.
- 118.
Mansouri Sarvandani, M.; Mahdikhani, M.; Aghabarati, H.; et al. Effect of Functionalized Multi-Walled Carbon Nanotubes on Mechanical Properties and Durability of Cement Mortars. J. Build. Eng. 2021, 41, 102407. https://doi.org/10.1016/j.jobe.2021.102407.
- 119.
Lu, L.; Ouyang, D.; Xu, W. Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes. Materials 2016, 9, 419. https://doi.org/10.3390/ma9060419.
- 120.
Chaipanich, A.; Rianyoi, R.; Nochaiya, T. The Effect of Carbon Nanotubes and Silica Fume on Compressive Strength and Flexural Strength of Cement Mortars. Mater. Today Proc. 2017, 4, 6065–6071. https://doi.org/10.1016/j.matpr.2017.06.095.
- 121.
Sajjad, U.; Sheikh, M.N.; Hadi, M.N.S. Experimental Study of the Effect of Graphene on Properties of Ambient-Cured Slag and Fly Ash-Based Geopolymer Paste and Mortar. Constr. Build. Mater. 2021, 313, 125403. https://doi.org/10.1016/j.conbuildmat.2021.125403.
- 122.
Djenaoucine, L.; Argiz, C.; Picazo, Á.; et al. The Corrosion-Inhibitory Influence of Graphene Oxide on Steel Reinforcement Embedded in Concrete Exposed to a 3.5M NaCl Solution. Cem. Concr. Compos. 2025, 155, 105835. https://doi.org/10.1016/j.cemconcomp.2024.105835.
- 123.
Wang, N.; Wang, S.; Tang, L.; et al. Improved Interfacial Bonding Strength and Reliability of Functionalized Graphene Oxide for Cement Reinforcement Applications. Chem. Eur. J. 2020, 26, 6561–6568. https://doi.org/10.1002/chem.201904625.
- 124.
Li, X.; Liu, Y.M.; Li, W.G.; et al. Effects of Graphene Oxide Agglomerates on Workability, Hydration, Microstructure and Compressive Strength of Cement Paste. Constr. Build. Mater. 2017, 145, 402–410. https://doi.org/10.1016/j.conbuildmat.2017.04.058.
- 125.
Long, W.-J.; Zhang, X.; Feng, G.-L.; et al. Investigation on Chloride Binding Capacity and Stability of Friedel’s Salt in Graphene Oxide Reinforced Cement Paste. Cem. Concr. Compos. 2022, 132, 104603. https://doi.org/10.1016/j.cemconcomp.2022.104603.
- 126.
Zhang, N.; She, W.; Du, F.; et al. Experimental Study on Mechanical and Functional Properties of Reduced Graphene Oxide/Cement Composites. Materials 2020, 13, 3015. https://doi.org/10.3390/ma13133015.
- 127.
Wang, Q.; Wang, J.; Lv, C.; et al. Rheological Behavior of Fresh Cement Pastes with a Graphene Oxide Additive. New Carbon Mater. 2016, 31, 574–584. https://doi.org/10.1016/S1872-5805(16)60033-1.
- 128.
Liao, C.; Lin, B.; Li, M.; et al. Synergistic Effects of Graphene Oxide and Fly Ash on Rheology, Mechanical Properties, and Microstructure of Highly-Flowable Cementitious Grouts. J. Build. Eng. 2024, 87, 109038. https://doi.org/10.1016/j.jobe.2024.109038.
- 129.
Fonseka, I.; Mohotti, D.; Wijesooriya, K.; et al. Influence of Graphene Oxide on Abrasion Resistance and Strength of Concrete. Constr. Build. Mater. 2023, 404, 133280. https://doi.org/10.1016/j.conbuildmat.2023.133280.
- 130.
Reddy, P.; Ravi Prasad, D. The Effect of Graphene Oxide-Fly Ash Hybridisation on the Hydration, Microstructure and Mechanical Characteristics of Cement Concrete. Fuller. Nanotub. Carbon Nanostructures 2024, 32, 380–388. https://doi.org/10.1080/1536383X.2023.2287603.
- 131.
Safarkhani, M.; Naderi, M. Enhanced Impermeability of Cementitious Composite by Different Content of Graphene Oxide Nanoparticles. J. Build. Eng. 2023, 72, 106675. https://doi.org/10.1016/j.jobe.2023.106675.
- 132.
Jiang, J.; Qin, J.; Chu, H. Improving Mechanical Properties and Microstructure of Ultra-High-Performance Lightweight Concrete via Graphene Oxide. J. Build. Eng. 2023, 80, 108038. https://doi.org/10.1016/j.jobe.2023.108038.
- 133.
Zhu, L.; Liu, Y.; Yaoji Tang, Y.L. Synthesis of Chitosan Graft Poly (Acrylic Acid-Co-2-Acrylamide-2-Methylpropanesul fonic Acid)/Graphite Oxide Composite Hydrogel and the Study of Its Adsorption. Polym. Polym. Compos. 2022, 30. https://doi.org/10.1177/09673911221086164.
- 134.
Narimani, A.; Kordnejad, F.; Kaur, P.; et al. Synthesis and Preparation of Poly (AM-Co-AMPS)/GO Nanocomposites Hydrogel as a Rheology Modifier and Fluid Loss Controller for Use in Oil Well Cementing. J. Dispers. Sci. Technol. 2023, 44, 1738–1749. https://doi.org/10.1080/01932691.2022.2039687.
- 135.
Dong, B.; Diao, H.; Ren, H.; et al. Chloride-Ion-Triggered Microcapsule for Self-Suppression of Capillary Suction in Cement Paste. Cem. Concr. Compos. 2023, 141, 105144. https://doi.org/10.1016/j.cemconcomp.2023.105144.
- 136.
Xiong, G.; Ren, Y.; Wang, C.; et al. Effect of Power Ultrasound Assisted Mixing on Graphene Oxide in Cement Paste: Dispersion, Microstructure and Mechanical Properties. J. Build. Eng. 2023, 69, 106321. https://doi.org/10.1016/j.jobe.2023.106321.
- 137.
Wang, W.; Zhong, Z.; Kang, X.; et al. Physico-Mechanical Properties and Micromorphological Characteristics of Graphene Oxide Reinforced Geopolymer Foam Concrete. J. Build. Eng. 2023, 72, 106732. https://doi.org/10.1016/j.jobe.2023.106732.
- 138.
Cui, D.; Wei, H.; Zuo, X.; et al. Use of Graphene Oxide to Improve the Durability and Mechanical Properties of Mortar Immersed in Flowing River for Three Years. Nanomaterials 2020, 10, 2385. https://doi.org/10.3390/nano10122385.
- 139.
Yuan, X.; Dai, M.; Gao, Y.; et al. Pore Morphology Based on Graphene Oxide Modified Steel Fibre Concrete for Freeze–Thaw Resistance. Constr. Build. Mater. 2023, 409, 133877. https://doi.org/10.1016/j.conbuildmat.2023.133877.
- 140.
Zhang, R.; Long, Z.; Long, G.; et al. Mechanism of Graphene Oxide Concrete Macro-Micro Properties Evolution under Large Temperature Difference Freeze-Thaw Action. Constr. Build. Mater. 2024, 415, 135019. https://doi.org/10.1016/j.conbuildmat.2024.135019.
- 141.
Qiao, W.; Shi, M.; Ban, T.; et al. Using Graphene Oxide to Enhance the Bonding Properties between Carbon Fibers and Cement Matrix to Improve the Mechanical Properties of Cement-Based Composites. Constr. Build. Mater. 2024, 453, 138992. https://doi.org/10.1016/j.conbuildmat.2024.138992.
- 142.
Zhang, J.; Xiao, M.; Feng, Y. A Review on Nanomaterials and Polymers Modified Cementitious Materials with High Performances. J. Build. Eng. 2025, 104, 112331. https://doi.org/10.1016/j.jobe.2025.112331.
- 143.
Yang, Q.; Yang, Q.; Peng, X.; et al. A Review of the Effects of Nanomaterials on the Properties of Concrete. Buildings 2025, 15, 2363. https://doi.org/10.3390/buildings15132363.
- 144.
Kishore, K.; Sheikh, M.N.; Hadi, M.N.S. Doped Multi-Walled Carbon Nanotubes and Nanoclay Based-Geopolymer Concrete: An Overview of Current Knowledge and Future Research Challenges. Cem. Concr. Compos. 2024, 154, 105774. https://doi.org/10.1016/j.cemconcomp.2024.105774.
- 145.
Chousidis, N.; Zeris, C. Carbon Nanotube Reinforcement for Cementitious Composites: Advancing Thermal Stability, Mechanical Strength and Durability in Fire-Resistant Concrete. J. Build. Eng. 2025, 111, 113587. https://doi.org/10.1016/j.jobe.2025.113587.
- 146.
Barbhuiya, S.; Das, B.B.; Adak, D. A Comprehensive Review on Integrating Sustainable Practices and Circular Economy Principles in Concrete Industry. J. Environ. Manag. 2024, 370, 122702. https://doi.org/10.1016/j.jenvman.2024.122702.
- 147.
Shen, W.; Liu, Y.; Yan, B.; et al. Cement Industry of China: Driving Force, Environment Impact and Sustainable Development. Renew. Sustain. Energy Rev. 2017, 75, 618–628. https://doi.org/10.1016/j.rser.2016.11.033.
- 148.
Liu, C.; He, X.; Deng, X.; et al. Application of Nanomaterials in Ultra-High Performance Concrete: A Review. Nanotechnol. Rev. 2020, 9, 1427–1444. https://doi.org/10.1515/ntrev-2020-0107.
- 149.
Khan, S.A.; Amjad, H.; Ahmad, F.; et al. A Scientometric Review Summarizing the Impact of Nanomaterials on the Fresh, Hardened, and Durability Properties of Cement-Based Materials. Adv. Civ. Eng. 2024, 2024, 8639483. https://doi.org/10.1155/adce/8639483.
- 150.
Hachhach, M.; Bayou, S.; El Kasmi, A.; et al. Towards Sustainable Scaling-Up of Nanomaterials Fabrication: Current Situation, Challenges, and Future Perspectives. Eng 2025, 6, 149. https://doi.org/10.3390/eng6070149.
- 151.
Fan, L.; Wu, C.; Zheng, J.; et al. Cement-Based Nanocomposites: The Synergic Effect of Graphene Oxide and Cellulose Nanofibers on Microstructural Features and Mechanical Performance. Diam. Relat. Mater. 2025, 158, 112609. https://doi.org/10.1016/j.diamond.2025.112609.
- 152.
Guo, E.; Zhang, W.; Lai, J.; et al. Enhancement of Cement-Based Materials: Mechanisms, Impacts, and Applications of Carbon Nanotubes in Microstructural Modification. Buildings 2025, 15, 1234. https://doi.org/10.3390/buildings15081234.
- 153.
Spencer, P.; Li, H.; Hocknull, S.; et al. Exploring Mineral–Organic Interactions for Eco-Friendly Concrete Alternatives: A Radical Concept. RSC Sustain. 2025, 3, 2064–2078. https://doi.org/10.1039/D4SU00696H.