2510001959
  • Open Access
  • Opinion

The Frontiers in Life Cycle Assessment Considering Materials Circularity

  • Florentios Economou 1,   
  • Irene Voukkali 1,   
  • Pantelitsa Loizia 2,   
  • Marinos Stylianou 1,   
  • Vincenzo Naddeo 3,   
  • Valentina Phinikettou 1,   
  • Charis G. Samanides 1,   
  • Nikoletta Tsiarta  1,   
  • Antonis A. Zorpas 1, *

Received: 05 Aug 2025 | Revised: 04 Oct 2025 | Accepted: 28 Oct 2025 | Published: 03 Nov 2025

Abstract

The accelerating global transition towards a circular economy necessitates a fundamental rethinking of how we assess environmental impacts, particularly through Life Cycle Assessment (LCA). Traditional LCA frameworks are largely linear, assessing the environmental burdens of products from cradle to grave. However, in an era where circularity is a policy goal and industrial practice, there is a growing need to reformulate LCA to effectively capture closed-loop systems, multiple product life cycles, and dynamic material flows. This opinion paper outlines the critical frontiers in LCA research and practice needed to address materials circularity, highlighting methodological innovations, integration challenges, and the role of digital technologies in enabling circular thinking within life cycle frameworks. The paper is based on peer-reviewed studies from four academic databases, using the keywords: “Life Cycle Assessment”, “Circular Economy”, “food valorization”, “food loss”, and “food waste”. Findings reveal that while several circularity indicators have emerged, traditional LCA often fails to account for avoided emissions, particularly in perishable goods.

References 

  • 1.
    Zorpas, A.A. The hidden concept and the beauty of multiple ‘R’ in the framework of waste strategies development reflecting to circular economy principles. Sci. Total Environ. 2024, 952, 175508. https://doi.org/10.1016/j.scitotenv.2024.175508.
  • 2.
    Parchomenko, A.; Nelen, D.; Gillabel, J.; et al. Measuring the circular economy—A Multiple Correspondence Analysis of 63 metrics. J. Clean. Prod. 2019, 210, 200–216. https://doi.org/10.1016/j.jclepro.2018.10.357.
  • 3.
    Hatzfeld, T.; Backes, J.G.; Guenther, E.; et al. Modeling circularity as Functionality Over Use-Time to reflect on circularity indicator challenges and identify new indicators for the circular economy. J. Clean. Prod. 2022, 379, 134797. https://doi.org/10.1016/j.jclepro.2022.134797.
  • 4.
    Bobba, S.; Coelho, F.; Mathieux, F. RMIS—Raw Materials Information System. European Commission. Available online: https://rmis.jrc.ec.europa.eu/CE (accessed on 9 August 2025).
  • 5.
    Bahnaru, R.; Hlaciuc, E. Circular Economy Measurement Tools, Challenges, and Global Standardization. Eur. J. Account. Financ. Bus. 2024, 12, 102–110. https://doi.org/10.4316/EJAFB.2024.12213.
  • 6.
    Barbhuiya, S.; Das, B.B. Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making. Case Stud. Constr. Mater. 2023, 19, e02326. https://doi.org/10.1016/j.cscm.2023.e02326.
  • 7.
    Gheewala, S.H. Life Cycle Thinking for Sustainable Consumption and Production towards a Circular Economy. E3S Web Conf. 2020, 202, 01003. https://doi.org/10.1051/e3sconf/202020201003.
  • 8.
    Peña, C.; Civit, B.; Gallego-Schmid, A.; et al. Using life cycle assessment to achieve a circular economy. Int. J. Life Cycle Assess. 2021, 26, 215–220. https://doi.org/10.1007/s11367-020-01856-z.
  • 9.
    Corona, B.; Shen, L.; Reike, D.; Rosales Carreón, J.; Worrell, E. Towards sustainable development through the circular economy—A review and critical assessment on current circularity metrics. Resour. Conserv. Recycl. 2019, 151, 104498. https://doi.org/10.1016/j.resconrec.2019.104498.
  • 10.
    Cimprich, A.; Young, S.B.; Schrijvers, D.; et al. The role of industrial actors in the circular economy for critical raw materials: A framework with case studies across a range of industries. Miner. Econ. 2023, 36, 301–319. https://doi.org/10.1007/s13563-022-00304-8.
  • 11.
    Achillas, C.; Bochtis, D. Toward a Green, Closed-Loop, Circular Bioeconomy: Boosting the Performance Efficiency of Circular Business Models. Sustainability 2020, 12, 10142. https://doi.org/10.3390/su122310142.
  • 12.
    Eberhardt, L.; Birgisdottir, H.; Birkved, M. Comparing life cycle assessment modelling of linear vs. circular building components. IOP Conf. Ser. Earth Environ. Sci. 2019, 225, 012039. https://doi.org/10.1088/1755-1315/225/1/012039.
  • 13.
    Gomes, V.; da Silva, M.G.; Kowaltowski, D.C.C.K. Long-Term Experience of Teaching Life Cycle Assessment and Circular Design to Future Architects: A Learning by Doing Approach in a Design Studio Setting. Sustainability 2022, 14, 7355. https://doi.org/10.3390/su14127355.
  • 14.
    Malabi Eberhardt, L.C.; Kuittinen, M.; Häkkinen, T.; et al. Carbon handprint—A review of potential climate benefits of buildings. Build. Res. Inf. 2024, 52, 708–723. https://doi.org/10.1080/09613218.2023.2266020.
  • 15.
    Abagnato, S.; Rigamonti, L.; Grosso, M. Life cycle assessment applications to reuse, recycling and circular practices for textiles: A review. Waste Manag. 2024, 182, 74–90. https://doi.org/10.1016/j.wasman.2024.04.016.
  • 16.
    Marrucci, L.; Marchi, M.; Daddi, T. Improving the carbon footprint of food and packaging waste management in a supermarket of the Italian retail sector. Waste Manag. 2020, 105, 594–603. https://doi.org/10.1016/j.wasman.2020.03.002.
  • 17.
    Joensuu, T.; Leino, R.; Heinonen, J.; Saari, A. Developing Buildings’ Life Cycle Assessment in Circular Economy-Comparing methods for assessing carbon footprint of reusable components. Sustain. Cities Soc. 2022, 77, 103499. https://doi.org/10.1016/j.scs.2021.103499.
  • 18.
    Cattaneo, A.; Federighi, G.; Vaz, S. The environmental impact of reducing food loss and waste: A critical assessment. Food Policy 2021, 98, 101890. https://doi.org/10.1016/j.foodpol.2020.101890.
  • 19.
    Brandão, M.; Weidema, B.P.; Martin, M.; et al. Consequential Life Cycle Assessment: What, Why and How? In Encyclopedia of Sustainable Technologies; Elsevier: Amsterdam, The Netherlands, 2024; pp. 181–189. https://doi.org/10.1016/B978-0-323-90386-8.00001-2.
  • 20.
    Ekvall, T. Attributional and Consequential Life Cycle Assessment. In Sustainability Assessment at the 21st Century; IntechOpen: London, UK, 2020. https://doi.org/10.5772/intechopen.89202.
  • 21.
    Sandin, G.; Lidfeldt, M.; Nellström, M. Exploring the Environmental Impact of Textile Recycling in Europe: A Consequential Life Cycle Assessment. Sustainability 2025, 17, 1931. https://doi.org/10.3390/su17051931.
  • 22.
    European Commission—Joint Research Centre—Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook—General Guide for Life Cycle Assessment—Detailed Guidance, 1st ed.; Office of the European Union: Luxembourg, 2010; EUR 24708 EN.
  • 23.
    Lindgreen, R.E.; Mondello, G.; Salomone, R.; et al. Exploring the effectiveness of grey literature indicators and life cycle assessment in assessing circular economy at the micro level: A comparative analysis. Int. J. Life Cycle Assess. 2021, 26, 2171–2191. https://doi.org/10.1007/s11367-021-01972-4.
  • 24.
    Spreafico, C. An analysis of design strategies for circular economy through life cycle assessment. Environ. Monit. Assess. 2022, 194, 180. https://doi.org/10.1007/s10661-022-09803-1.
  • 25.
    Papamichael, I.; Economou, F.; Voukkali, I.; et al. A metaverse framework for sustainable waste management considering circular economy. Chem. Eng. J. 2025, 512, 162283. https://doi.org/10.1016/j.cej.2025.162283.
Share this article:
How to Cite
Economou, F.; Voukkali, I.; Loizia, P.; Stylianou, M.; Naddeo, V.; Phinikettou, V.; Samanides, C. G.; Tsiarta , N.; Zorpas, A. A. The Frontiers in Life Cycle Assessment Considering Materials Circularity. Earth: Environmental Sustainability 2025, 1 (2), 235–243. https://doi.org/10.53941/eesus.2025.100019.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.