2511002153
  • Open Access
  • Perspective

Wildfires in Brazilian Biomes: Environmental Impacts, Policy Challenges, and Future Directions

  • Edivaldo Lopes Thomaz 1,*,   
  • Yasmmin Tadeu Costa 1,   
  • Paulo Angelo Fachin 2

Received: 16 Jun 2025 | Revised: 20 Oct 2025 | Accepted: 03 Nov 2025 | Published: 17 Nov 2025

Abstract

Wildfires play a central role in shaping the landscapes and ecosystems in Brazil by considerably affecting biogeochemical cycles, soil properties, and vegetation dynamics. In this study, the pyrogeography of Brazilian biomes, wildfire occurrences from 1999 to 2024, the primary environmental consequences of fires in each biome, and key challenges related to fire policy in Brazil are elucidated. The analysis of public data from the Brazilian National Institute for Space Research (INPE) has revealed that 80% of fires occur in the Amazon and Cerrado biomes due to the expansion of agricultural frontiers, mainly during dry winter and spring seasons. Their effects of such fires on ecosystems vary with vegetation type, topography, and burn severity, influencing soil properties, hydrological processes, carbon stocks, and erosion. Fire policies in Brazil have structural and institutional limitations such as a limited state presence in remote areas and resource shortages. The implementation of Integrated Fire Management (IFM) in protected areas incorporates prescribed burning and traditional knowledge based on ecological monitoring; however, these efforts remain fragmented and lack national integration. The future of fire management in Brazil focuses on coordinating science, public policy, and local engagement; expanding remote sensing; supporting local brigades; and promoting strategies tailored to the ecological and cultural conditions of different regions. To address the complex dynamics of illegal fires driven by agricultural expansion and apply controlled ecologically oriented burns for conservation, technically informed solutions, social participation, and public action grounded in territorial realities are essential. 

Graphical Abstract

References 

  • 1.
    Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; et al. Fire in the Earth system. Science 2009, 324, 481–484.
  • 2.
    Novotny, E.H.; deAzevedo, E.R.; Bonagamba, T.J.; et al. Studies of the compositions of humic acids from Amazonian Dark Earth soils. Environ. Sci. Technol. 2007, 41, 400–405. https://doi.org/10.1021/es060941x.
  • 3.
    Ellis, E.C.; Kaplan, J.O.; Fuller, D.Q.; et al. Used planet: A global history. Proc. Natl. Acad. Sci. USA 2013, 110, 7978–7985. https://doi.org/10.1073/pnas.1217241110.
  • 4.
    Aragão, L.E.O.C.; Shimabukuro, Y.E. The incidence of fire in amazonian forests with implications for REDD. Science 2010, 328, 1275–1278. https://doi.org/10.1126/science.1186925.
  • 5.
    IPCC. Climate Change 2014 Mitigation of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2015. https://doi.org/10.1017/cbo9781107415416.
  • 6.
    De Faria, B.L.; Brando, P.M.; Macedo, M.N.; et al. Current and future patterns of fire-induced forest degradation in Amazonia. Environ. Res. Lett. 2017, 12, 095005. https://doi.org/10.1088/1748-9326/aa69ce.
  • 7.
    Aragão, L.E.O.C.; Malhi, Y.; Roman-Cuesta, R.M.; et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 2007, 34, L07701. https://doi.org/10.1029/2006GL028946.
  • 8.
    da Silva, S.S.; Fearnside, P.M.; de Alencastro Graca, P.M.; et al. Dynamics of forest fires in the southwestern Amazon. For. Ecol. Manag. 2018, 424, 312–322. https://doi.org/10.1016/j.foreco.2018.04.041.
  • 9.
    Marengo, J.A.; Ambrizzi, T.; Barreto, N.; et al. The heat wave of October 2020 in central South America. Int. J. Climatol. 2022, 42, 2281–2298. https://doi.org/10.1002/joc.7365.
  • 10.
    Silva, P.S.; Geirinhas, J.L.; Lapere, R.; et al. Heatwaves and fire in Pantanal: Historical and future perspectives from CORDEX-CORE. J. Environ. Manag. 2022, 323, 116193. https://doi.org/10.1016/j.jenvman.2022.116193.
  • 11.
    Araújo, T.; Conceição, A.A. High functional redundancy drives vegetation recovery in Campo rupestre affected by wildfires. Flora: Morphol. Distrib. Funct. Ecol. Plants 2021, 281, 151866. https://doi.org/10.1016/j.flora.2021.151866.
  • 12.
    DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. Fire Effects on Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 1998.
  • 13.
    Santín, C.; Doerr, S.H. Fire effects on soils: The human dimension. Phil. Trans. R. Soc. B 2016, 371, 20150171.
  • 14.
    Raposo, M.A.M.; Pinto Gomes, C.J.; Nunes, L.J.R. Selective shrub management to preserve mediterranean forests and reduce the risk of fire: The case of mainland portugal. Fire 2020, 3, 65. https://doi.org/10.3390/fire3040065.
  • 15.
    Costa, Y.T.; Thomaz, E.L. Management, sustainability and research perspective of prescribed fires in tropical parks. Curr. Opin. Environ. Sci. Health 2021, 22, 100257. https://doi.org/10.1016/j.coesh.2021.100257.
  • 16.
    Zupo, T.; Gorgone-Barbosa, E.; Rissi, M.N.; et al. Experimental burns in an open savanna: Greater fuel loads result in hotter fires. Austral Ecol. 2022, 47, 1101–1112. https://doi.org/10.1111/aec.13202.
  • 17.
    Flores, B.M.; Holmgren, M. White-Sand Savannas Expand at the Core of the Amazon After Forest Wildfires. Ecosystems 2021, 24, 1624–1637. https://doi.org/10.1007/s10021-021-00607-x.
  • 18.
    INPE. Instituto Nacional de Pesquisas Espaciais. TerraBrasilis. Available online: https://terrabrasilis.dpi.inpe.br/app/dashboard/fires/biomes/aggregated/ (accessed on 25 April 2025).
  • 19.
    PBMC. Scientific Basis of Climate Change. Contribution of Working Group 1 of the Brazilian Panel on Climate Change to the First Report of the National Assessment on Climate Change; COPPE, Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2014. (In Portuguese)
  • 20.
    Ribeiro, A.F.S.; Santos, L.; Randerson, J.T.; et al. The time since land-use transition drives changes in fire activity in the Amazon-Cerrado region. Commun. Earth Environ. 2024, 5, 96. https://doi.org/10.1038/s43247-024-01248-3.
  • 21.
    Feng, Y.; Aragão, L.E.O.C.; Staal, A.; et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 2021, 597, 517–522. https://doi.org/10.1038/s41586-021-03876-7.
  • 22.
    Drüke, M.; Barbosa, R.I.; Aragão, L.E.O.C.; et al. Fire as a barrier to forest recovery in Amazonia. Nat. Commun. 2023, 14, 348. https://doi.org/10.1038/s41467-023-00911-5.
  • 23.
    Arruda, D.S.; Silva, T.S.F.; Carvalho, L.; et al. Assessing four decades of fire behavior dynamics in the Brazilian Cerrado. Fire Ecol. 2024, 20, 21. https://doi.org/10.1186/s42408-024-00298-4.
  • 24.
    Sobreira, E.; Lázaro, W.L.; Vitorino, B.D.; et al. Wildfires and their toll on Brazil: Who’s counting the cost? Perspect. Ecol. Conserv. 2025, 23, 214–217. https://doi.org/10.1016/j.pecon.2025.06.003.
  • 25.
    Shakesby, R.; Doerr, S. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 2006, 74, 269–307. https://doi.org/10.1016/j.earscirev.2005.10.006.
  • 26.
    Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. https://doi.org/10.1071/WF07049.
  • 27.
    Parsons, A.; Robichaud, P.R.; Lewis, S.A.; et al. Field Guide for Mapping Post-Fire Soil Burn Severity; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010; Volume 243.
  • 28.
    Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; et al. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. https://doi.org/10.1016/s0378-1127(99)00032-8.
  • 29.
    Barreiro, A.; Díaz-Raviña, M. Fire impacts on soil microorganisms: Mass, activity, and diversity. Curr. Opin. Environ. Sci. Health 2021, 22, 100264. https://doi.org/10.1016/j.coesh.2021.100264.
  • 30.
    Bodí, M.B.; Martin, D.A.; Balfour, V.N.; et al. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Sci. Rev. 2014, 130, 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007.
  • 31.
    de Sousa, R.R.; Leão, E.U.; Veloso, R.A.; et al. Impact of burning vegetation on the cerrado fungi soil. Cienc. Florest. 2019, 29, 955–964. https://doi.org/10.5902/1980509822614.
  • 32.
    Moreira, M.; Baretta, D.; Tsai, S.M.; et al. Arbuscular mycorrhizal fungal communities in native and in replanted Araucaria forest. Sci. Agric. 2009, 66, 677–684. https://doi.org/10.1590/S0103-90162009000500013.
  • 33.
    Rocha, D.R.; Barber, X.; Jordan-Vidal, M.M.; et al. Multivariate Analysis with XRD Data as a Fingerprinting Technique to Study Burned Soils. Minerals 2022, 12, 1402. https://doi.org/10.3390/min12111402.
  • 34.
    Erazo-Mora, K.; Montalván-Burbano, N.; Aburto, F.; et al. Four decades in fires research—A bibliometric analysis about the impact on mineralogy and nutrients. Catena 2023, 226, 107065. https://doi.org/10.1016/j.catena.2023.107065.
  • 35.
    Fachin, P.A.; Costa, Y.T.; Thomaz, E.L. Evolution of the soil chemical properties in slash-and-burn agriculture along several years of fallow. Sci. Total Environ. 2020, 764, 142823. https://doi.org/10.1016/j.scitotenv.2020.142823.
  • 36.
    Ribeiro Filho, A.A.; Adams, C.; Manfredini, S.; et al. Dynamics of soil chemical properties in shifting cultivation systems in the tropics: A meta-analysis. Soil Use Manag. 2015, 31, 474–482. https://doi.org/10.1111/sum.12224.
  • 37.
    Brito, D.Q.; Santos, L.H.G.; Passos, C.J.S.; et al. Short-Term Effects of Wildfire Ash on Water Quality Parameters: A Laboratory Approach. Bull. Environ. Contam. Toxicol. 2021, 107, 500–505. https://doi.org/10.1007/s00128-021-03220-9.
  • 38.
    Soranço, L.C.; da Silva, C.J.; de Freitas Junior, D.S.; et al. Wildfire ashes: Evaluating threats on the Pantanal wetland reserve (Mato Grosso, Brazil) using ecotoxicological tests. Environ. Sci. Pollut. Res. 2025, 32, 2624–2637. https://doi.org/10.1007/s11356-025-35892-9.
  • 39.
    Brito, D.Q.; Passos, C.J.S.; Muniz, D.H.F.; et al. Aquatic ecotoxicity of ashes from Brazilian savanna wildfires. Environ. Sci. Pollut. Res. 2017, 24, 19671–19682. https://doi.org/10.1007/s11356-017-9578-0.
  • 40.
    Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; et al. Fire effects on soil aggregation: A review. Earth-Sci. Rev. 2011, 109, 44–60. https://doi.org/10.1016/j.earscirev.2011.08.002.
  • 41.
    Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. https://doi.org/10.1016/j.soilbio.2008.09.015.
  • 42.
    Six, J.; Bossuyt, H.; Degryze, S.; et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. https://doi.org/10.1016/j.still.2004.03.008.
  • 43.
    Thomaz, E.L. Effects of fire on the aggregate stability of clayey soils: A meta-analysis. Earth-Sci. Rev. 2021, 221, 103802. https://doi.org/10.1016/j.earscirev.2021.103802.
  • 44.
    Thomaz, E.L. Ash physical characteristics affects differently soil hydrology and erosion subprocesses. Land Degrad. Dev. 2017, 29, 690–700. https://doi.org/10.1002/ldr.2715.
  • 45.
    León, J.; Bodí, M.B.; Cerdà, A.; et al. The contrasted response of ash to wetting. The effects of ash type, thickness and rainfall events. Geoderma 2013, 209–210, 143–152. https://doi.org/10.1016/j.geoderma.2013.06.018.
  • 46.
    Antoneli, V.; Thomaz, E.L. Effect of fire severity on hydro-erosive processes and black bean (Phaseolus vulgaris L.) productivity under slash-and-burn agriculture. Agric. Ecosyst. Environ. 2025, 381, 109454. https://doi.org/10.1016/j.agee.2024.109454.
  • 47.
    Vieira, D.C.S.; Fernández, C.; Vega, J.A.; et al. Does soil burn severity affect the post-fire runoff and interrill erosion response? A review based on meta-analysis of field rainfall simulation data. J. Hydrol. 2015, 523, 452–464. https://doi.org/10.1016/j.jhydrol.2015.01.071.
  • 48.
    Gabet, E.J.; Sternberg, P. The effects of vegetative ash on infiltration capacity, sediment transport, and the generation of progressively bulked debris flows. Geomorphology 2008, 101, 666–673. https://doi.org/10.1016/j.geomorph.2008.03.005.
  • 49.
    Coelho Netto, A.L.; Bolsas, L.; Facadio, A.C.; et al. Vegetation changes through recurrent fire affect soil water behavior and enhance landslides in the mountainous region of Rio de Janeiro state, southeast Brazil. Catena 2024, 241, 108028. https://doi.org/10.1016/j.catena.2024.108028.
  • 50.
    Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. https://doi.org/10.1038/s43017-020-0085-3.
  • 51.
    Fidelis, A. Is fire always the “bad guy”? Flora 2020, 268, 151611. https://doi.org/10.1016/j.flora.2020.151611.
  • 52.
    Diniz, Y.V.F.G.; Oliveira, A.P.P.; Silva, T.P.; et al. Prescribed fire application in a Brazilian mountain environment: Changes in soil organic matter quality in the short and medium term. Catena 2023, 232, 107418. https://doi.org/10.1016/j.catena.2023.107418.
  • 53.
    Rocha, W.; Silvério, D.V.; Maracahipes-Santos, L.; et al. Drought and fire affect soil CO₂ efflux and use of non-structural carbon by roots in forests of southern Amazonia. For. Ecol. Manag. 2025, 585, 122584. https://doi.org/10.1016/j.foreco.2025.122584.
  • 54.
    Souza, C.R.; Souza, F.C.; Françoso, R.D.; et al. Functional and structural attributes of Brazilian tropical and subtropical forests and savannas. For. Ecol. Manag. 2024, 558, 121811. https://doi.org/10.1016/j.foreco.2024.121811.
  • 55.
    Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34.
  • 56.
    Alvim, D.S.; Suski, C.A.; Kasemodel, M.C.; et al. Spatial distribution of atmospheric pollutants and fire outbreaks in the Pantanal biome from 2016 to 2021. An. Acad. Bras. Cienc. 2024, 96, e20240174. https://doi.org/10.1590/0001-3765202420240174.
  • 57.
    Reynard-Callanan, J.; Pope, G.; Gorring, M.; et al. Effects of high-intensity forest fires on soil clay mineralogy. Phys. Geogr. 2010, 31, 407–422. https://doi.org/10.2747/0272-3646.31.5.407.
  • 58.
    Giardina, C.P.; Sanford, R.L.; Døckersmith, I.C.; et al. The effects of slash burning on ecosystem nutrients during the land preparation phase of shifting cultivation. Plant Soil 2000, 220, 247–260.
  • 59.
    Pinto, A.D.; Bustamante, M.M.C.; Kisselle, K.; et al. Soil emissions of N2O, NO, and CO2 in Brazilian Savannas: Effects of vegetation type, seasonality, and prescribed fires. J. Geophys. Res.-Atmos. 2002, 107, LBA 57-1–LBA 57-9. https://doi.org/10.1029/2001JD000342.
  • 60.
    Metcalfe, D.B.; Rocha, W.; Balch, J.K.; et al. Impacts of fire on sources of soil CO2 efflux in a dry Amazon rain forest. Glob. Chang. Biol. 2018, 24, 3629–3641. https://doi.org/10.1111/gcb.14305.
  • 61.
    Magomani, M.I.; van Tol, J.J. The impact of fire frequency on selected soil physical properties in a semi-arid savannah Thornveld. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 43–51. https://doi.org/10.1080/09064710.2018.1495253.
  • 62.
    de Mattos, B.S.; Bertolino, A.V.F.A.; Bertolino, L.C. The Influences of Forest Fires on the Repellency, Mineralogy and Thermogravimetry of Soils in a Mountainous Area of the Atlantic Forest Biome-the Study Case of São Pedro da Serra, Rio de Janeiro (Brazil). Anu. Inst. Geocienc. 2023, 46. https://doi.org/10.11137/1982-3908_2023_46_55681.
  • 63.
    Ribeiro, M.R.; Lima, M.V.M.; Ilacqua, R.C.; et al. Amazon Wildfires and Respiratory Health: Impacts during the Forest Fire Season from 2009 to 2019. Int. J. Environ. Res. Public Health 2024, 21, 675. https://doi.org/10.3390/ijerph21060675.
  • 64.
    Schmidt, I.B.; Eloy, L. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora 2020, 268, 151613. https://doi.org/10.1016/j.flora.2020.151613.
  • 65.
    Schmidt, I.B.; Moura, L.C.; Ferreira, M.C.; et al. Fire management in the Brazilian savanna: First steps and the way forward. J. Appl. Ecol. 2018, 55, 2094–2101. https://doi.org/10.1111/1365-2664.13118.
  • 66.
    Alencar, A.A.; Brando, P.M.; Asner, G.P.; Putz, F.E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 2015, 25, 1493–1505. https://doi.org/10.1890/14-1528.1.
  • 67.
    Sansevero, J.B.B.; Garbin, M.L.; Sánchez-Tapia, A.; et al. Fire drives abandoned pastures to a savanna-like state in the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 2020, 18, 31–36. https://doi.org/10.1016/j.pecon.2019.12.004.
  • 68.
    Brasil. Novo Código Florestal Brasileiro. Lei No. 12.651, de 25 de Maio de 2012 Disponível em. Available online: http://www. planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei (accessed on 2 November 2025).
  • 69.
    Brasil. Decreto No. 2.661, de 8 de Julho de 1998. Disponível em. Available online: https://www.planalto.gov.br/ccivil_03/decreto/D2661.htm (accessed on 2 November 2025).
  • 70.
    IBAMA (Prevfogo). Centro Nacional de Prevenção e Combate aos Incêndios Florestais (Prevfogo). Available online: https://www.gov.br/ibama/pt-br/assuntos/fiscalizacao-e-protecao-ambiental/manejo-integrado-do-fogo/prevfogo (accessed on 2 November 2025).
  • 71.
    Tampekis, S.; Sakellariou, S.; Palaiologou, P.; et al. Building wildland–urban interface zone resilience through performance-based wildfire engineering: A holistic theoretical framework. Euro-Mediterr. J. Environ. Integr. 2023, 8, 675–689. https://doi.org/10.1007/s41207-023-00380.
  • 72.
    Falleiro, R.D.M.; Moura, L.C.; Xerente, P.P.; et al. Using a Cultural Keystone Species in Participatory Monitoring of Fire Management in Indigenous Lands in the Brazilian Savanna. Fire 2024, 7, 231. https://doi.org/10.3390/fire7070231.
  • 73.
    Mistry, J.; Schmidt, I.B.; Eloy, L.; et al. New perspectives in fire management in South American savannas: The importance of intercultural governance. Ambio 2019, 48, 172–179. https://doi.org/10.1007/s13280-018-1054-7.
  • 74.
    Andrade, A.S.R.; Ramos, R.M.; Sano, E.E.; et al. Implementation of fire policies in Brazil: An assessment of fire dynamics in Brazilian savanna. Sustainability 2021, 13, 11532. https://doi.org/10.3390/su132011532.
  • 75.
    Cancio, A.K.C.; Guerrero-Moreno, M.A.; da Silva, E.C.; et al. The impacts of fire use in the Brazilian Amazon: A bibliometric analysis. Int. J. Wildland Fire 2025, 34, WF24182. https://doi.org/10.1071/WF24182.
  • 76.
    Pivello, V.R.; Vieira, I.; Christianini, A.V.; et al. Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspect. Ecol. Conserv. 2021, 19, 233–255. https://doi.org/10.1016/j.pecon.2021.06.005.
  • 77.
    Kirschner, J.A.; Clark, J.; Boustras, G. Governing wildfires: Toward a systematic analytical framework. Ecol. Soc. 2023, 28, 6. https://doi.org/10.5751/ES-13920-280206.
Share this article:
How to Cite
Thomaz, E. L.; Costa, Y. T.; Fachin, P. A. Wildfires in Brazilian Biomes: Environmental Impacts, Policy Challenges, and Future Directions. Earth: Environmental Sustainability 2025, 1 (2), 265–275. https://doi.org/10.53941/eesus.2025.100022.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.