- 1.
Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; et al. Fire in the Earth system. Science 2009, 324, 481–484.
- 2.
Novotny, E.H.; deAzevedo, E.R.; Bonagamba, T.J.; et al. Studies of the compositions of humic acids from Amazonian Dark Earth soils. Environ. Sci. Technol. 2007, 41, 400–405. https://doi.org/10.1021/es060941x.
- 3.
Ellis, E.C.; Kaplan, J.O.; Fuller, D.Q.; et al. Used planet: A global history. Proc. Natl. Acad. Sci. USA 2013, 110, 7978–7985. https://doi.org/10.1073/pnas.1217241110.
- 4.
Aragão, L.E.O.C.; Shimabukuro, Y.E. The incidence of fire in amazonian forests with implications for REDD. Science 2010, 328, 1275–1278. https://doi.org/10.1126/science.1186925.
- 5.
IPCC. Climate Change 2014 Mitigation of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2015. https://doi.org/10.1017/cbo9781107415416.
- 6.
De Faria, B.L.; Brando, P.M.; Macedo, M.N.; et al. Current and future patterns of fire-induced forest degradation in Amazonia. Environ. Res. Lett. 2017, 12, 095005. https://doi.org/10.1088/1748-9326/aa69ce.
- 7.
Aragão, L.E.O.C.; Malhi, Y.; Roman-Cuesta, R.M.; et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 2007, 34, L07701. https://doi.org/10.1029/2006GL028946.
- 8.
da Silva, S.S.; Fearnside, P.M.; de Alencastro Graca, P.M.; et al. Dynamics of forest fires in the southwestern Amazon. For. Ecol. Manag. 2018, 424, 312–322. https://doi.org/10.1016/j.foreco.2018.04.041.
- 9.
Marengo, J.A.; Ambrizzi, T.; Barreto, N.; et al. The heat wave of October 2020 in central South America. Int. J. Climatol. 2022, 42, 2281–2298. https://doi.org/10.1002/joc.7365.
- 10.
Silva, P.S.; Geirinhas, J.L.; Lapere, R.; et al. Heatwaves and fire in Pantanal: Historical and future perspectives from CORDEX-CORE. J. Environ. Manag. 2022, 323, 116193. https://doi.org/10.1016/j.jenvman.2022.116193.
- 11.
Araújo, T.; Conceição, A.A. High functional redundancy drives vegetation recovery in Campo rupestre affected by wildfires. Flora: Morphol. Distrib. Funct. Ecol. Plants 2021, 281, 151866. https://doi.org/10.1016/j.flora.2021.151866.
- 12.
DeBano, L.F.; Neary, D.G.; Ffolliott, P.F. Fire Effects on Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 1998.
- 13.
Santín, C.; Doerr, S.H. Fire effects on soils: The human dimension. Phil. Trans. R. Soc. B 2016, 371, 20150171.
- 14.
Raposo, M.A.M.; Pinto Gomes, C.J.; Nunes, L.J.R. Selective shrub management to preserve mediterranean forests and reduce the risk of fire: The case of mainland portugal. Fire 2020, 3, 65. https://doi.org/10.3390/fire3040065.
- 15.
Costa, Y.T.; Thomaz, E.L. Management, sustainability and research perspective of prescribed fires in tropical parks. Curr. Opin. Environ. Sci. Health 2021, 22, 100257. https://doi.org/10.1016/j.coesh.2021.100257.
- 16.
Zupo, T.; Gorgone-Barbosa, E.; Rissi, M.N.; et al. Experimental burns in an open savanna: Greater fuel loads result in hotter fires. Austral Ecol. 2022, 47, 1101–1112. https://doi.org/10.1111/aec.13202.
- 17.
Flores, B.M.; Holmgren, M. White-Sand Savannas Expand at the Core of the Amazon After Forest Wildfires. Ecosystems 2021, 24, 1624–1637. https://doi.org/10.1007/s10021-021-00607-x.
- 18.
INPE. Instituto Nacional de Pesquisas Espaciais. TerraBrasilis. Available online: https://terrabrasilis.dpi.inpe.br/app/dashboard/fires/biomes/aggregated/ (accessed on 25 April 2025).
- 19.
PBMC. Scientific Basis of Climate Change. Contribution of Working Group 1 of the Brazilian Panel on Climate Change to the First Report of the National Assessment on Climate Change; COPPE, Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2014. (In Portuguese)
- 20.
Ribeiro, A.F.S.; Santos, L.; Randerson, J.T.; et al. The time since land-use transition drives changes in fire activity in the Amazon-Cerrado region. Commun. Earth Environ. 2024, 5, 96. https://doi.org/10.1038/s43247-024-01248-3.
- 21.
Feng, Y.; Aragão, L.E.O.C.; Staal, A.; et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 2021, 597, 517–522. https://doi.org/10.1038/s41586-021-03876-7.
- 22.
Drüke, M.; Barbosa, R.I.; Aragão, L.E.O.C.; et al. Fire as a barrier to forest recovery in Amazonia. Nat. Commun. 2023, 14, 348. https://doi.org/10.1038/s41467-023-00911-5.
- 23.
Arruda, D.S.; Silva, T.S.F.; Carvalho, L.; et al. Assessing four decades of fire behavior dynamics in the Brazilian Cerrado. Fire Ecol. 2024, 20, 21. https://doi.org/10.1186/s42408-024-00298-4.
- 24.
Sobreira, E.; Lázaro, W.L.; Vitorino, B.D.; et al. Wildfires and their toll on Brazil: Who’s counting the cost? Perspect. Ecol. Conserv. 2025, 23, 214–217. https://doi.org/10.1016/j.pecon.2025.06.003.
- 25.
Shakesby, R.; Doerr, S. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 2006, 74, 269–307. https://doi.org/10.1016/j.earscirev.2005.10.006.
- 26.
Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. https://doi.org/10.1071/WF07049.
- 27.
Parsons, A.; Robichaud, P.R.; Lewis, S.A.; et al. Field Guide for Mapping Post-Fire Soil Burn Severity; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010; Volume 243.
- 28.
Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; et al. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. https://doi.org/10.1016/s0378-1127(99)00032-8.
- 29.
Barreiro, A.; Díaz-Raviña, M. Fire impacts on soil microorganisms: Mass, activity, and diversity. Curr. Opin. Environ. Sci. Health 2021, 22, 100264. https://doi.org/10.1016/j.coesh.2021.100264.
- 30.
Bodí, M.B.; Martin, D.A.; Balfour, V.N.; et al. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Sci. Rev. 2014, 130, 103–127. https://doi.org/10.1016/j.earscirev.2013.12.007.
- 31.
de Sousa, R.R.; Leão, E.U.; Veloso, R.A.; et al. Impact of burning vegetation on the cerrado fungi soil. Cienc. Florest. 2019, 29, 955–964. https://doi.org/10.5902/1980509822614.
- 32.
Moreira, M.; Baretta, D.; Tsai, S.M.; et al. Arbuscular mycorrhizal fungal communities in native and in replanted Araucaria forest. Sci. Agric. 2009, 66, 677–684. https://doi.org/10.1590/S0103-90162009000500013.
- 33.
Rocha, D.R.; Barber, X.; Jordan-Vidal, M.M.; et al. Multivariate Analysis with XRD Data as a Fingerprinting Technique to Study Burned Soils. Minerals 2022, 12, 1402. https://doi.org/10.3390/min12111402.
- 34.
Erazo-Mora, K.; Montalván-Burbano, N.; Aburto, F.; et al. Four decades in fires research—A bibliometric analysis about the impact on mineralogy and nutrients. Catena 2023, 226, 107065. https://doi.org/10.1016/j.catena.2023.107065.
- 35.
Fachin, P.A.; Costa, Y.T.; Thomaz, E.L. Evolution of the soil chemical properties in slash-and-burn agriculture along several years of fallow. Sci. Total Environ. 2020, 764, 142823. https://doi.org/10.1016/j.scitotenv.2020.142823.
- 36.
Ribeiro Filho, A.A.; Adams, C.; Manfredini, S.; et al. Dynamics of soil chemical properties in shifting cultivation systems in the tropics: A meta-analysis. Soil Use Manag. 2015, 31, 474–482. https://doi.org/10.1111/sum.12224.
- 37.
Brito, D.Q.; Santos, L.H.G.; Passos, C.J.S.; et al. Short-Term Effects of Wildfire Ash on Water Quality Parameters: A Laboratory Approach. Bull. Environ. Contam. Toxicol. 2021, 107, 500–505. https://doi.org/10.1007/s00128-021-03220-9.
- 38.
Soranço, L.C.; da Silva, C.J.; de Freitas Junior, D.S.; et al. Wildfire ashes: Evaluating threats on the Pantanal wetland reserve (Mato Grosso, Brazil) using ecotoxicological tests. Environ. Sci. Pollut. Res. 2025, 32, 2624–2637. https://doi.org/10.1007/s11356-025-35892-9.
- 39.
Brito, D.Q.; Passos, C.J.S.; Muniz, D.H.F.; et al. Aquatic ecotoxicity of ashes from Brazilian savanna wildfires. Environ. Sci. Pollut. Res. 2017, 24, 19671–19682. https://doi.org/10.1007/s11356-017-9578-0.
- 40.
Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; et al. Fire effects on soil aggregation: A review. Earth-Sci. Rev. 2011, 109, 44–60. https://doi.org/10.1016/j.earscirev.2011.08.002.
- 41.
Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. https://doi.org/10.1016/j.soilbio.2008.09.015.
- 42.
Six, J.; Bossuyt, H.; Degryze, S.; et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. https://doi.org/10.1016/j.still.2004.03.008.
- 43.
Thomaz, E.L. Effects of fire on the aggregate stability of clayey soils: A meta-analysis. Earth-Sci. Rev. 2021, 221, 103802. https://doi.org/10.1016/j.earscirev.2021.103802.
- 44.
Thomaz, E.L. Ash physical characteristics affects differently soil hydrology and erosion subprocesses. Land Degrad. Dev. 2017, 29, 690–700. https://doi.org/10.1002/ldr.2715.
- 45.
León, J.; Bodí, M.B.; Cerdà, A.; et al. The contrasted response of ash to wetting. The effects of ash type, thickness and rainfall events. Geoderma 2013, 209–210, 143–152. https://doi.org/10.1016/j.geoderma.2013.06.018.
- 46.
Antoneli, V.; Thomaz, E.L. Effect of fire severity on hydro-erosive processes and black bean (Phaseolus vulgaris L.) productivity under slash-and-burn agriculture. Agric. Ecosyst. Environ. 2025, 381, 109454. https://doi.org/10.1016/j.agee.2024.109454.
- 47.
Vieira, D.C.S.; Fernández, C.; Vega, J.A.; et al. Does soil burn severity affect the post-fire runoff and interrill erosion response? A review based on meta-analysis of field rainfall simulation data. J. Hydrol. 2015, 523, 452–464. https://doi.org/10.1016/j.jhydrol.2015.01.071.
- 48.
Gabet, E.J.; Sternberg, P. The effects of vegetative ash on infiltration capacity, sediment transport, and the generation of progressively bulked debris flows. Geomorphology 2008, 101, 666–673. https://doi.org/10.1016/j.geomorph.2008.03.005.
- 49.
Coelho Netto, A.L.; Bolsas, L.; Facadio, A.C.; et al. Vegetation changes through recurrent fire affect soil water behavior and enhance landslides in the mountainous region of Rio de Janeiro state, southeast Brazil. Catena 2024, 241, 108028. https://doi.org/10.1016/j.catena.2024.108028.
- 50.
Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. https://doi.org/10.1038/s43017-020-0085-3.
- 51.
Fidelis, A. Is fire always the “bad guy”? Flora 2020, 268, 151611. https://doi.org/10.1016/j.flora.2020.151611.
- 52.
Diniz, Y.V.F.G.; Oliveira, A.P.P.; Silva, T.P.; et al. Prescribed fire application in a Brazilian mountain environment: Changes in soil organic matter quality in the short and medium term. Catena 2023, 232, 107418. https://doi.org/10.1016/j.catena.2023.107418.
- 53.
Rocha, W.; Silvério, D.V.; Maracahipes-Santos, L.; et al. Drought and fire affect soil CO₂ efflux and use of non-structural carbon by roots in forests of southern Amazonia. For. Ecol. Manag. 2025, 585, 122584. https://doi.org/10.1016/j.foreco.2025.122584.
- 54.
Souza, C.R.; Souza, F.C.; Françoso, R.D.; et al. Functional and structural attributes of Brazilian tropical and subtropical forests and savannas. For. Ecol. Manag. 2024, 558, 121811. https://doi.org/10.1016/j.foreco.2024.121811.
- 55.
Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34.
- 56.
Alvim, D.S.; Suski, C.A.; Kasemodel, M.C.; et al. Spatial distribution of atmospheric pollutants and fire outbreaks in the Pantanal biome from 2016 to 2021. An. Acad. Bras. Cienc. 2024, 96, e20240174. https://doi.org/10.1590/0001-3765202420240174.
- 57.
Reynard-Callanan, J.; Pope, G.; Gorring, M.; et al. Effects of high-intensity forest fires on soil clay mineralogy. Phys. Geogr. 2010, 31, 407–422. https://doi.org/10.2747/0272-3646.31.5.407.
- 58.
Giardina, C.P.; Sanford, R.L.; Døckersmith, I.C.; et al. The effects of slash burning on ecosystem nutrients during the land preparation phase of shifting cultivation. Plant Soil 2000, 220, 247–260.
- 59.
Pinto, A.D.; Bustamante, M.M.C.; Kisselle, K.; et al. Soil emissions of N2O, NO, and CO2 in Brazilian Savannas: Effects of vegetation type, seasonality, and prescribed fires. J. Geophys. Res.-Atmos. 2002, 107, LBA 57-1–LBA 57-9. https://doi.org/10.1029/2001JD000342.
- 60.
Metcalfe, D.B.; Rocha, W.; Balch, J.K.; et al. Impacts of fire on sources of soil CO2 efflux in a dry Amazon rain forest. Glob. Chang. Biol. 2018, 24, 3629–3641. https://doi.org/10.1111/gcb.14305.
- 61.
Magomani, M.I.; van Tol, J.J. The impact of fire frequency on selected soil physical properties in a semi-arid savannah Thornveld. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 43–51. https://doi.org/10.1080/09064710.2018.1495253.
- 62.
de Mattos, B.S.; Bertolino, A.V.F.A.; Bertolino, L.C. The Influences of Forest Fires on the Repellency, Mineralogy and Thermogravimetry of Soils in a Mountainous Area of the Atlantic Forest Biome-the Study Case of São Pedro da Serra, Rio de Janeiro (Brazil). Anu. Inst. Geocienc. 2023, 46. https://doi.org/10.11137/1982-3908_2023_46_55681.
- 63.
Ribeiro, M.R.; Lima, M.V.M.; Ilacqua, R.C.; et al. Amazon Wildfires and Respiratory Health: Impacts during the Forest Fire Season from 2009 to 2019. Int. J. Environ. Res. Public Health 2024, 21, 675. https://doi.org/10.3390/ijerph21060675.
- 64.
Schmidt, I.B.; Eloy, L. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora 2020, 268, 151613. https://doi.org/10.1016/j.flora.2020.151613.
- 65.
Schmidt, I.B.; Moura, L.C.; Ferreira, M.C.; et al. Fire management in the Brazilian savanna: First steps and the way forward. J. Appl. Ecol. 2018, 55, 2094–2101. https://doi.org/10.1111/1365-2664.13118.
- 66.
Alencar, A.A.; Brando, P.M.; Asner, G.P.; Putz, F.E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 2015, 25, 1493–1505. https://doi.org/10.1890/14-1528.1.
- 67.
Sansevero, J.B.B.; Garbin, M.L.; Sánchez-Tapia, A.; et al. Fire drives abandoned pastures to a savanna-like state in the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 2020, 18, 31–36. https://doi.org/10.1016/j.pecon.2019.12.004.
- 68.
Brasil. Novo Código Florestal Brasileiro. Lei No. 12.651, de 25 de Maio de 2012 Disponível em. Available online: http://www. planalto.gov.br/ccivil_03/_Ato2011-2014/2012/Lei (accessed on 2 November 2025).
- 69.
Brasil. Decreto No. 2.661, de 8 de Julho de 1998. Disponível em. Available online: https://www.planalto.gov.br/ccivil_03/decreto/D2661.htm (accessed on 2 November 2025).
- 70.
IBAMA (Prevfogo). Centro Nacional de Prevenção e Combate aos Incêndios Florestais (Prevfogo). Available online: https://www.gov.br/ibama/pt-br/assuntos/fiscalizacao-e-protecao-ambiental/manejo-integrado-do-fogo/prevfogo (accessed on 2 November 2025).
- 71.
Tampekis, S.; Sakellariou, S.; Palaiologou, P.; et al. Building wildland–urban interface zone resilience through performance-based wildfire engineering: A holistic theoretical framework. Euro-Mediterr. J. Environ. Integr. 2023, 8, 675–689. https://doi.org/10.1007/s41207-023-00380.
- 72.
Falleiro, R.D.M.; Moura, L.C.; Xerente, P.P.; et al. Using a Cultural Keystone Species in Participatory Monitoring of Fire Management in Indigenous Lands in the Brazilian Savanna. Fire 2024, 7, 231. https://doi.org/10.3390/fire7070231.
- 73.
Mistry, J.; Schmidt, I.B.; Eloy, L.; et al. New perspectives in fire management in South American savannas: The importance of intercultural governance. Ambio 2019, 48, 172–179. https://doi.org/10.1007/s13280-018-1054-7.
- 74.
Andrade, A.S.R.; Ramos, R.M.; Sano, E.E.; et al. Implementation of fire policies in Brazil: An assessment of fire dynamics in Brazilian savanna. Sustainability 2021, 13, 11532. https://doi.org/10.3390/su132011532.
- 75.
Cancio, A.K.C.; Guerrero-Moreno, M.A.; da Silva, E.C.; et al. The impacts of fire use in the Brazilian Amazon: A bibliometric analysis. Int. J. Wildland Fire 2025, 34, WF24182. https://doi.org/10.1071/WF24182.
- 76.
Pivello, V.R.; Vieira, I.; Christianini, A.V.; et al. Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspect. Ecol. Conserv. 2021, 19, 233–255. https://doi.org/10.1016/j.pecon.2021.06.005.
- 77.
Kirschner, J.A.; Clark, J.; Boustras, G. Governing wildfires: Toward a systematic analytical framework. Ecol. Soc. 2023, 28, 6. https://doi.org/10.5751/ES-13920-280206.