- 1.
Sheoran, K.; Kaur, H.; Siwal, S.S.; et al. Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application. Chemosphere 2022, 299, 134364.
- 2.
Baloch, M.Y.J.; Zhang, W.; Sultana, T.; et al. Innovation, Utilization of sewage sludge to manage saline–alkali soil and increase crop production: Is it safe or not? Environ. Technol. Innov. 2023, 32, 103266.
- 3.
Zubair, M.; Arshad, M.; Ullah, A. Chitosan-Based Materials for Water and Wastewater Treatment. In Handbook of Chitin and Chitosan; Elsevier: Amsterdam, The Netherlands, 2020; pp. 773–809.
- 4.
Elgarahy, A.M.; Eloffy, M.; Guibal, E.; et al. Use of biopolymers in wastewater treatment: A brief review of current trends and prospects. Chin. J. Chem. Eng. 2023, 64, 292–320.
- 5.
de Ilurdoz, M.S.; Sadhwani, J.J.; Reboso, J.V. Antibiotic removal processes from water & wastewater for the protection of the aquatic environment-a review. J. Water Process Eng. 2022, 45, 102474.
- 6.
Wilkinson, J.L.; Boxall, A.B.; Kolpin, D.W.; et al. Marchant, Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119.
- 7.
Samal, K.; Mahapatra, S.; Ali, M.H. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus 2022, 6, 100076.
- 8.
Xu, L.; Zhang, H.; Xiong, P.; et al. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2020, 753, 141975.
- 9.
Tyumina, E.A.; Bazhutin, G.A.; Cartagena Gómez, A.P.; et al. Nonsteroidal anti-inflammatory drugs as emerging contaminants. Microbiology 2020, 89, 148–163.
- 10.
Valdez-Carrillo, M.; Abrell, L.; Ramírez-Hernández, J.; et al. Research, Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: A review. Environ. Sci. Pollut. Res. 2020, 27, 44863–44891.
- 11.
Hejna, M.; Kapuścińska, D.; Aksmann, A.J. Pharmaceuticals in the aquatic environment: A review on eco-toxicology and the remediation potential of algae. Int. J. Environ. Res. Public Health 2022, 19, 7717.
- 12.
Bhushan, S.; Rana, M.S.; Raychaudhuri, S.; et al. Algae-And Bacteria-Driven Technologies for Pharmaceutical Remediation in Wastewater. In Removal of Toxic Pollutants Through Microbiological and Tertiary Treatment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 373–408.
- 13.
Ortúzar, M.; Esterhuizen, M.; Olicón-Hernández, D.R.; et al. Pharmaceutical pollution in aquatic environments: A concise review of environmental impacts and bioremediation systems. Front. Microbiol. 2022, 13, 869332.
- 14.
Das, R.; Raj, D. Sources, distribution, and impacts of emerging contaminants–a critical review on contamination of landfill leachate. J. Hazard. Mater. Adv. 2025, 17, 100602.
- 15.
Khasawneh, O.F.S.; Palaniandy, P.J.P.S.; Protection, E. Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Saf. Environ. Prot. 2021, 150, 532–556.
- 16.
Morin-Crini, N.; Lichtfouse, E.; Fourmentin, M.; et al. Removal of emerging contaminants from wastewater using advanced treatments. A review. Environ. Chem. Lett. 2022, 20, 1333–1375.
- 17.
Papagiannaki, D.; Belay, M.H.; Gonçalves, N.P.; et al. From monitoring to treatment, how to improve water quality: The pharmaceuticals case. Chem. Eng. J. Adv. 2022, 10, 100245.
- 18.
Patel, M.; Kumar, R.; Kishor, K.; et al. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673.
- 19.
Yu, G.; Wang, Y.; Cao, H.; et al. Technology, Reactive oxygen species and catalytic active sites in heterogeneous catalytic ozonation for water purification. Environ. Sci. Technol. 2020, 54, 5931–5946.
- 20.
Ojha, A.; Tiwary, D.; Oraon, R.; et al. Research, Degradations of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: A critical review. Environ. Sci. Pollut. Res. 2021, 28, 30573–30594.
- 21.
Ahmed, S.; Mofijur, M.; Nuzhat, S.; et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J. Hazard. Mater. 2021, 416, 125912.
- 22.
Parra-Saldivar, R.; Castillo-Zacarías, C.; Bilal, M.; et al. Sources of Pharmaceuticals in Water. In The Handbook of Environmental Chemistry; Springer Nature: Switzerland, 2020; pp. 33–47.
- 23.
Singh, A.K.; Kaur, R.; Verma, S.; et al. Antimicrobials and antibiotic resistance genes in water bodies: Pollution, risk, and control. Front. Environ. Sci. 2022, 10, 830861.
- 24.
Yi, X.; Lin, C.; Ong, E.J.L.; et al. Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure. Chemosphere 2019, 216, 213–223.
- 25.
Singh, P.K.; Kumar, U.; Kumar, I.; et al. Critical review on toxic contaminants in surface water ecosystem: Sources, monitoring, and its impact on human health. Environ. Sci. Pollut. Res. Int. 2024, 31, 56428–56462.
- 26.
Akhter, S.; Bhat, M.A.; Ahmed, S.; et al. Antibiotic residue contamination in the aquatic environment, sources and associated potential health risks. Environ. Geochem. Health 2024, 46, 387.
- 27.
Maghsodian, Z.; Sanati, A.M.; Mashifana, T.; et al. Occurrence and distribution of antibiotics in the water, sediment, and Biota of freshwater and marine environments: A review. Antibiotics 2022, 11, 1461.
- 28.
Jurado, A.; Vázquez-Suñé, E.; Pujades, E. Urban groundwater contamination by non-steroidal anti-inflammatory drugs. Water 2021, 13, 720.
- 29.
Placova, K.; Halfar, J.; Brozova, K.; et al. Issues of Non-Steroidal Anti-Inflammatory Drugs in Aquatic Environments: A Review Study. In Proceedings of the 4th International Conference on Advances in Environmental Engineering, Ostrava, Czech Republic, 20–22 November 2023; p. 13.
- 30.
Chen, Y.; Wang, J.; Xu, P.; et al. Antidepressants as emerging contaminants: Occurrence in wastewater treatment plants and surface waters in Hangzhou, China. Front. Public Health 2022, 10, 963257.
- 31.
Moreira, D.G.; Aires, A.; de Lourdes Pereira, M.; et al. Levels and effects of antidepressant drugs to aquatic organisms. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 256, 109322.
- 32.
Kanan, S.; Moyet, M.; Obeideen, K.; et al. Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: A review. Res. Chem. Intermed. 2022, 48, 3633–3683.
- 33.
Liu, Q.; Wang, L.; Xu, X.; et al. Antiepileptic drugs in aquatic environments: Occurrence, toxicity, transformation mechanisms and fate. Crit. Rev. Environ. Sci. Technol. 2023, 53, 2030–2054.
- 34.
Klanovicz, N.; Scapini, T.; Dalastra, C.; et al. Antiepileptic Drugs: From Public to Environmental Health Problem. In Biochar and its Application in Bioremediation; Springer: Singapore, 2021; pp. 209–229.
- 35.
Thi, L.-A.P.; Panchangam, S.C.; Do, H.-T.; et al. Prospects and Challenges of Photocatalysis for Degradation and Mineralization of Antiviral Drugs. In Nanostructured Photocatalysts; Elsevier: Amsterdam, The Netherlands, 2021; pp. 489–517.
- 36.
Cristóvão, M.B.; Bernardo, J.; Bento-Silva, A.; Treatment of anticancer drugs in a real wastewater effluent using nanofiltration: A pilot scale study. Sep. Purif. Technol. 2022, 288, 120565.
- 37.
Kayode-Afolayan, S.D.; Ahuekwe, E.F.; Nwinyi, O.C. Impacts of pharmaceutical effluents on aquatic ecosystems. Sci. Afr. 2022, 17, e01288.
- 38.
Hao, C.; Lissemore, L.; Nguyen, B.; et al. Determination of pharmaceuticals in environmental waters by liquid chromatography/electrospray ionization/tandem mass spectrometry. Anal. Bioanal. Chem. 2006, 384, 505–513.
- 39.
Ferguson, P.J.; Bernot, M.J.; Doll, J.C.; et al. Detection of pharmaceuticals and personal care products (PPCPs) in near-shore habitats of southern Lake Michigan. Sci. Total Environ. 2013, 458, 187–196.
- 40.
Ebele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16.
- 41.
Xie, Z.-H.; He, C.-S.; Zhou, H.-Y.; et al. Effects of molecular structure on organic contaminants’ degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS. Environ. Sci. Technol. 2022, 56, 8784–8795.
- 42.
Sayadi, M.H.; Chamanehpour, E.; Fahoul, N. Recent advances and future outlook for treatment of pharmaceutical from water: An overview. Int. J. Environ. Sci. Technol. 2022, 20, 3437–3454.
- 43.
Yousefi Seyf, J.; Zarei, F.; Jalalinejad, A. Valorization of pharmaceutical waste by recovery of active pharmaceutical ingredients from expired or unused finished pharmaceutical products with thermodynamic modeling. Org. Process Res. Dev. 2025, 29, 1333–1344.
- 44.
Rúa-Gómez, P.C.; Püttmann, W. Impact of wastewater treatment plant discharge of lidocaine, tramadol, venlafaxine and their metabolites on the quality of surface waters and groundwater. J. Environ. Monit. 2012, 14, 1391.
- 45.
Ohoro, C.R.; Adeniji, A.O.; Elsheikh, E.A.E.; et al. Influence of physicochemical parameters on PPCP occurrences in the wetlands. Environ. Monit. Assess. 2022, 194, 339.
- 46.
Coimbra, R.N.; Escapa, C.; Otero, M. Removal of pharmaceuticals from water: Conventional and alternative treatments. Water, 2021, 13, 487.
- 47.
Eniola, J.O.; Kumar, R.; Barakat, M.A.; et al. A review on conventional and advanced hybrid technologies for pharmaceutical wastewater treatment. J. Clean. Prod. 2022, 356, 131826.
- 48.
Simazaki, D.; Fujiwara, J.; Manabe, S.; et al. Removal of selected pharmaceuticals by chlorination, coagulation-sedimentation and powdered activated carbon treatment. Water Sci. Technol. 2008, 58, 1129–1135.
- 49.
Date, M.; Jaspal, D. Pharmaceutical wastewater remediation: A review of treatment techniques. Ind. Eng. Chem. Res. 2023, 62, 20492–20505.
- 50.
Roslan, N.N.; Lau, H.L.H.; Suhaimi, N.A.A.; et al. Usman, Recent advances in advanced oxidation processes for degrading pharmaceuticals in wastewater-A review. Catalysts 2024, 14, 189.
- 51.
Vilatela, J.J.; Eder, D. Nanocarbon composites and hybrids in sustainability: A review. ChemSusChem 2012, 5, 456–478.
- 52.
Rahchamandi, S.Y.R.; Mirhadi, E.; Gheybi, F.; et al. Engineering carbon-based nanomaterials for the delivery of platinum compounds: An innovative cancer disarming frontier. Environ. Res. 2024, 262, 119933.
- 53.
Gonçalves, G. Nanocarbon-Based Composites and Their Thermal, Electrical, and Mechanical Properties. C J. Carbon Res. 2025, 11, 21.
- 54.
Kurniawan, D.; Xia, Z.; Dai, L.; et al. Zero-dimensional nano-carbons: Synthesis, properties, and applications. Appl. Phys. Rev. 2024, 11, 021311.
- 55.
Raja, I.S.; Song, S.-J.; Kang, M.S.; et al. Toxicity of zero-and one-dimensional carbon nanomaterials. Nanomaterials 2019, 9, 1214.
- 56.
Kilic, M.E.; Lee, K.-R. Four-penta-graphenes: Novel two-dimensional fenestrane-based auxetic nanocarbon allotropes for nanoelectronics and optoelectronics. Carbon 2022, 195, 154–164.
- 57.
Huang, B.; Liu, Y.; Xie, Z. Two dimensional nanocarbons from biomass and biological molecules: Synthetic strategies and energy related applications. J. Energy Chem. 2021, 54, 795–814.
- 58.
Tang, C.; Han, H.; Zhang, R.; et al. A Geometrically Flexible Three-Dimensional Nanocarbon. JACS 2024, 146, 20158–20167.
- 59.
Sun, Z.; Fang, S.; Hu, Y.H. 3D graphene materials: From understanding to design and synthesis control. Chem. Rev. 2020, 120, 10336–10453.
- 60.
Mora, A.; Verma, P.; Kumar, S. Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling. Compos. B Eng. 2020, 183, 107600.
- 61.
Zhu, H.; Xu, C.; Wu, D.; et al. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296, 884–886.
- 62.
Aqel, A.; Abou El-Nour, K.M.; Ammar, R.A. et al. Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arab. J. Chem. 2012, 5, 1–23.
- 63.
Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.
- 64.
Syduzzaman, M.; Saad, M.S.I.; Piam, M.F.; et al. Carbon nanotubes: Structure, properties and applications in the aerospace industry. Results Mater. 2025, 25, 100654.
- 65.
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
- 66.
Novoselov, K.S. Graphene: Materials in the flatland (Nobel Lecture). Angew. Chem. Int. Ed. 2011, 50, 6986–7002.
- 67.
Manimegalai, S.; Vickram, S.; Deena, S.R.; et al. Carbon-based nanomaterial intervention and efficient removal of various contaminants from effluents—A review. Chemosphere 2023, 312, 137319.
- 68.
Foo, M.E.; Gopinath, S.C. Feasibility of graphene in biomedical applications. Biomed. Pharmacother. 2017, 94, 354–361.
- 69.
Phiri, J.; Gane, P.; Maloney, T.C. General overview of graphene: Production, properties and application in polymer composites. Mater. Sci. Eng. B 2017, 215, 9–28.
- 70.
Park, S.; Lee, K.-S.; Bozoklu, G.; et al. Graphene oxide papers modified by divalent ions—Enhancing mechanical properties via chemical cross-linking. ACS Nano 2008, 2, 572–578.
- 71.
Lee, X.J.; Hiew, B.Y.Z.; Lai, K.C.; et al. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 2019, 98, 163–180.
- 72.
Edwards, R.S.; Coleman, K.S. Graphene synthesis: Relationship to applications. Nanoscale 2013, 5, 38–51.
- 73.
Compton, O.C.; Nguyen, S.T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010, 6, 711–723.
- 74.
Sindi, A.M. Applications of graphene oxide and reduced graphene oxide in advanced dental materials and therapies. J. Taibah Univ. Med. Sci 2024, 19, 403–421.
- 75.
Khan, A.; Wang, J.; Li, J.; et al. The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: A review. Environ. Sci. Pollut. Res. 2017, 24, 7938–7958.
- 76.
Thakur, K.; Kandasubramanian, B. Graphene and graphene oxide-based composites for removal of organic pollutants: A review. J. Chem. Eng. Data 2019, 64, 833–867.
- 77.
Yan, H.; Yang, H.; Li, A.; et al. pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water. Chem. Eng. J 2016, 284, 1397–1405.
- 78.
Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production-A review. Renew. Sustain. Energy Rev. 2007, 11, 1966–2005.
- 79.
Foo, K.; Hameed, B. A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects. J. Hazard. Mater. 2009, 170, 552–559.
- 80.
Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; et al. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415.
- 81.
Shao, Y.; Li, J.; Fang, X.; et al. Chemical modification of bamboo activated carbon surface and its adsorption property of simultaneous removal of phosphate and nitrate. Chemosphere 2022, 287, 132118.
- 82.
Aljeboree, A.M.; Alshirifi, A.N. Adsorption of Pharmaceuticals as emerging contaminants from aqueous solutions on to friendly surfaces such as activated carbon: A review. J. Pharm. Sci. Res. 2018, 10, 2252–2257.
- 83.
Kaur, H.; Bansiwal, A.; Hippargi, G.; et al. Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism. Environ. Sci. Pollut. Res. 2018, 25, 20473–20485.
- 84.
Viegas, R.M.; Mestre, A.S.; Mesquita, E.; et al. Assessing the applicability of a new carob waste-derived powdered activated carbon to control pharmaceutical compounds in wastewater treatment. Sci. Total Environ. 2020, 743, 140791.
- 85.
Mukoko, T.; Mupa, M.; Guyo, U.; et al. Preparation of rice hull activated carbon for the removal of selected pharmaceutical waste compounds in hospital effluent. J. Environ. Anal. Toxicol. 2015, S7. https://doi.org/10.4172/2161-0525.S7-008.
- 86.
Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; et al. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.
- 87.
Dresselhaus, M.; Dresselhaus, G.; Eklund, P. Fullerenes. J. Mater. Res. 1993, 8, 2054–2097.
- 88.
Lee, J.; Hong, S.; Mackeyev, Y.; et al. Photosensitized oxidation of emerging organic pollutants by tetrakis C60 aminofullerene-derivatized silica under visible light irradiation. Environ. Sci. Technol. 2011, 45, 10598–10604.
- 89.
Elessawy, N.A.; Elnouby, M.; Gouda, M.H.; et al. Ciprofloxacin removal using magnetic fullerene nanocomposite obtained from sustainable PET bottle wastes: Adsorption process optimization, kinetics, isotherm, regeneration and recycling studies. Chemosphere 2020, 239, 124728.
- 90.
Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.
- 91.
Lin, P.; Chen, J.-W.; Chang, L.W.; et al. Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice. Environ. Sci. Technol. 2008, 42, 6264–6270.
- 92.
Parambil, A.M.; Priyadarshini, E.; Goutam, R.; et al. Self-assembled mesoporous silica decorated with biogenic carbon dot nanospheres hybrid nanomaterial for efficient removal of aqueous Methoxy-DDT via a Short-Bed Adsorption column technique. Environ. Res. 2024, 260, 119653.
- 93.
Kah, M.; Sigmund, G.; Xiao, F.; et al. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Res. 2017, 124, 673–692.
- 94.
Sarti, E.; Chenet, T.; Stevanin, C.; et al. High-silica zeolites as sorbent media for adsorption and pre-concentration of pharmaceuticals in aqueous solutions. Molecules 2020, 25, 3331.
- 95.
Liu, Y.; Liu, X.; Lu, S.; et al. Adsorption and biodegradation of sulfamethoxazole and ofloxacin on zeolite: Influence of particle diameter and redox potential. Chem. Eng. J. 2022, 384, 123346.
- 96.
Fraiha, O.; Hadoudi, N.; Zaki, N.; et al. Comprehensive review on the adsorption of pharmaceutical products from wastewater by clay materials. Desalin. Water Treat. 2024, 317, 100114.
- 97.
Firmansyah, M.L.; Alwan, Y.; Ullah, N. A comprehensive review on the adsorptive removal of pharmaceutical pollutants: Occurrence, toxicology, molecular simulation and mechanistic insights. Talanta Open 2025, 12, 100491.
- 98.
Mansouri, F.; Chouchene, K.; Roche, N.; et al. Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: State of the art and trends. Appl. Sci. 2021, 11, 6659.
- 99.
Olusegun, S.J.; Souza, T.G.; Souza, G.d.O.; et al. Iron-based materials for the adsorption and photocatalytic degradation of pharmaceutical drugs: A comprehensive review of the mechanism pathway. J. Water Process Eng. 2023, 51, 103457.
- 100.
Tatarchuk, T.; Soltys, L.; Macyk, W. Magnetic adsorbents for removal of pharmaceuticals: A review of adsorption properties. J. Mol. Liq. 2023, 384, 122174.
- 101.
Liu, Y.; Li, N.; Du, C.; et al. Various hydrogen bonds make different fates of pharmaceutical contaminants on oxygen-rich nanomaterials. Environ. Pollut. 2023, 316, 120572.
- 102.
Pavlenko, V.; Żółtowska, S.; Haruna, A.; et al. A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Mater. Sci. Eng. R Rep. 2022, 149, 100682.
- 103.
Mohapatra, L.; Cheon, D.; Yoo, S.H. Carbon-based nanomaterials for catalytic wastewater treatment: A review. Molecules 2023, 28, 1805.
- 104.
Xin, L.; Hu, J.; Xiang, Y.; et al. Carbon-based nanocomposites as fenton-like catalysts in wastewater treatment applications: A review. Materials 2021, 14, 2643.
- 105.
Guo, L.; Liu, D.; Han, R.; et al. Advances in Activation of Persulfate by Novel Carbon-Based Materials: Degradation of Emerging Contaminants, Mechanisms, and Perspectives. Crystals 2025, 15, 432.
- 106.
Saroa, A.; Singh, A.; Jindal, N.; et al. Nanotechnology-assisted treatment of pharmaceuticals contaminated water. Bioengineered 2023, 14, 2260919.
- 107.
Ruziwa, D.T.; Oluwalana, A.E.; Mupa, M.; et al. Pharmaceuticals in wastewater and their photocatalytic degradation using nano-enabled photocatalysts. J. Water Process Eng. 2023, 54, 103880.
- 108.
Hooshmand, S.; Kargozar, S.; Ghorbani, A.; et al. Biomedical waste management by using nanophotocatalysts: The need for new options. Materials 2020, 13, 3511.
- 109.
Ai, L.; Yang, Y.; Wang, B.; et al. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives. Sci. Bull. 2021, 66, 839–856.
- 110.
Emon, S.H.; Hossain, M.I.; Khanam, M.; et al. Expanding horizons: Taking advantage of graphene’s surface area for advanced applications. Appl. Sci. 2025, 15, 1541.
- 111.
Chakravorty, A.; Roy, S. A review of photocatalysis, basic principles, processes, and materials. Sustain. Chem. Environ. 2024, 8, 100155.
- 112.
Mahalakshmi, D.; Nandhini, J.; Karthikeyan, E.; et al. Carbon nanomaterials for emerging contaminant remediation: Addressing pharmaceutical pollution in the water cycle with precision. Water Cycle 2025, 6, 449–472.
- 113.
Pikula, K.; Johari, S.A.; Santos-Oliveira, R.; et al. Joint toxicity and interaction of carbon-based nanomaterials with co-existing pollutants in aquatic environments: A review. Int. J. Mol. Sci. 2024, 25, 11798.
- 114.
Jiwanti, P.K.; Wardhana, B.Y.; Sutanto, L.G.; et al. Recent development of nano-carbon material in pharmaceutical application: A review. Molecules 2022, 27, 7578.
- 115.
Zaremba, O.T.; Goldt, A.E.; Khabushev, E.M.; et al. Highly efficient doping of carbon nanotube films with chloroauric acid by dip-coating. Mater. Sci. Eng. B 2022, 278, 115648.
- 116.
Adewoye, T.L.; Ogunleye, O.O.; Abdulkareem, A.S.; et al. Optimization of the adsorption of total organic carbon from produced water using functionalized multi-walled carbon nanotubes. Heliyon 2021, 7, e05866.
- 117.
Santra, T.S.; Mohan, L. Nanomaterials and Their Biomedical Applications; Springer Nature: Singapore, 2021.
- 118.
Ansari, A.S.; Azzahra, G.; Nugroho, F.G.; et al. Oxides and Metal Oxide/Carbon Hybrid Materials for Efficient Photocatalytic Organic Pollutant Removal. Catalysts 2025, 15, 134.
- 119.
Abd-Elsalam, K.A.; Zahid, M. Aquananotechnology: Applications of Nanomaterials for Water Purification; Elsevier: Amsterdam, The Netherlands, 2020.
- 120.
Hasnain, M.S.; Nayak, A.K.; Aminabhavi, T.M. Advanced Nanoformulations: Theranostic Nanosystems; Academic Press: London, UK, 2023, Volume 3.
- 121.
Wakejo, W.K.; Maged, A.; Meshesha, B.T.; et al. Tuneable functionalized biochar for simultaneous removal of pharmaceuticals from binary mixture. Colloids Surf. A Physicochem. Eng. Asp. 2024, 681, 132718.
- 122.
Mustapha, S.I.; Muritala, K.B.; Afolabi, A.M.; et al. Phenol removal from pharmaceutical effluent using silver doped magnetite biochar: Adsorption efficiency and kinetic studies. Chem. Eng. Commun. 2025. https://doi.org/10.1080/00986445.2025.2519294.
- 123.
Leao, M.B.; Fernandes, A.N.; Ferreira de Matos Jauris, C. Nanocarbon Dimensionality and Oxidation Degree Influence the Sorption of Atenolol: Implications for Water Treatment. ACS Appl. Nano Mater. 2024, 7, 8307–8317.
- 124.
Zhao, Y.-G.; Sun, Y.-F.; Gao, H.-G.; et al. Preparation of a superhydrophobic nano carbon skeleton microsphere for efficient removal of toluene in medical campus. Polymer 2025, 335, 128777.
- 125.
Makhseed, S.; Mustafa, S.A.; Hayssam, M.; et al. Ultrahigh-surface-area phenothiazine-derived nanocarbon for adsorptive removal of iodine and pharmaceutical pollutants. Sep. Purif. Technol. 2025, 378, 134746.
- 126.
Homaeigohar, S. Water Treatment with New Nanomaterials. Water 2020, 12, 1507.
- 127.
Kumar, S.; Kumar, P.; Pathak, C.S. Silver Micro-Nanoparticles: Properties, Synthesis, Characterization, and Applications; Books on Demand: London, UK,, 2021.
- 128.
Bhanvase, B.A.; Barai, D.P. Bio-derived Carbon Nanostructures: Fundamentals, Synthesis and Applications; Elsevier: Amsterdam, The Netherlands, 2024.
- 129.
Rizzo, C.; Marullo, S.; Dintcheva, N.T.; et al. Carbon Nanomaterial Doped Ionic Liquid Gels for the Removal of Pharmaceutically Active Compounds from Water. Molecules 2019, 24, 2788.
- 130.
Pal, V.K.; Kumar, D.; Gupta, A.; et al. Nanocarbons Decorated TiO2 As Advanced Nanocomposite Fabric to Tackle a Mixed Pollutant System of Dye (Mb) and Pharmaceutical Active Compound (Cpf). Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4832709 (accessed on 5 October 2025).
- 131.
Nille, O.S.; Kolekar, A.G.; Devre, P.V.; et al. Nanocarbon eco-hydrogel kit: On-site visual metal ion sensing and dye cleanup, advancing the circular economy in environmental remediation. Analyst 2024, 150, 69–80.
- 132.
Zhang, Z.; Zhang, W.; Lichtfouse, E. Membranes for Environmental Applications; Springer Nature: Cham, Switzerland, 2020.
- 133.
Frenzilli, G. Nanotechnology for Environmental and Biomedical Research. Nanomaterial 2020, 10, 2220.
- 134.
Ray, S.S.; Gusain, R.; Kumar, N. Carbon Nanomaterial-Based Adsorbents for Water Purification: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2020.
- 135.
Thomas, S.; Ahmadi, M.; Afkhami, A.; et al. Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems; Elsevier: Amsterdam, The Netherlands, 2021.
- 136.
Zarzycki, P.K. Pure and Functionalized Carbon Based Nanomaterials: Analytical, Biomedical, Civil and Environmental Engineering Applications; CRC Press: Boca Raton, FL, USA, 2020.
- 137.
Sharon, M.; Sharon, M. Carbon Nanofibers: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2021.
- 138.
Arnault, J.-C.; Eder, D. Synthesis and Applications of Nanocarbons; John Wiley & Sons: Hoboken, NJ, USA, 2020.
- 139.
Fan, M.; Hu, J.; Cao, R.; et al. A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere 2018, 200, 330–343.
- 140.
Yang, J.; Du, Q.; Ma, R.; et al. Artificial intelligence simulation of water treatment using a novel bimodal micromesoporous nanocomposite. J. Mol. Liq. 2021, 340, 117296.
- 141.
Syah, R.; Piri, F.; Elveny, M.; et al. Artificial Intelligence simulation of water treatment using nanostructure composite ordered materials. J. Mol. Liq. 2022, 345, 117046.
- 142.
Alam, G.; Ihsanullah, I.; Naushad, M.; et al. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes. Chem. Eng. J. 2022, 427, 130011.
- 143.
Wassim, J. Artificial Intelligence in the Age of Nanotechnology; IGI Global: Hershey, PA, USA, 2023.
- 144.
Gupta, R.K. NanoCarbon: A Wonder Material for Energy Applications. In Fundamentals and Advancement for Energy Storage Applications; Springer Nature: Singapore, 2024.
- 145.
Nazal, M.K. An overview of carbon-based materials for the removal of pharmaceutical active compounds. In Carbon-Based Material for Environmental Protection and Remediation; IntechOpen: London, UK, 2020.
- 146.
González-Poggini, S.; Rosenkranz, A.; Colet-Lagrille, M. Two-dimensional nanomaterials for the removal of pharmaceuticals from wastewater: A critical review. Processes 2021, 9, 2160.
- 147.
Malik, A.; Haider, A.; Qamar, M.A.; et al. Advancements in CNT-based materials for optimized pharmaceutical removal via adsorption and photocatalysis. Rev. Inorg. Chem. 2025, 45, 453–478.
- 148.
Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; et al. Treatment trends and combined methods in removing pharmaceuticals and personal care products from wastewater—A review. Membranes 2023, 13, 158.
- 149.
Malode, S.J.; Pandiaraj, S.; Alodhayb, A.; et al. Carbon nanomaterials for biomedical applications: Progress and outlook. ACS Appl. Bio Mater. 2024, 7, 752–777.