- 1.
Sathya, A.B.; Thirunavukkarasu, A.; Nithya, R.; et al. Microalgal biofuel production: Potential challenges and prospective research. Fuel 2023, 332, 126199.
- 2.
Kong, F.; Torres, I.; Warakanont, J.; et al. Lipid catabolism in microalgae. New Phytol. 2018, 218, 1340–1348.
- 3.
Wang, Y.; Yang, S.; Liu, J.; et al. Realization process of microalgal biorefinery: The optional approach toward carbon net-zero emission. Sci. Total Environ. 2023, 901, 165546.
- 4.
Peter, A.P.; Khoo, K.S.; Chew, K.W.; et al. Microalgae for biofuels, wastewater treatment and environmental monitoring. Environ. Chem. Lett. 2021, 19, 2891–2904.
- 5.
Yusoff, I.I.; Rohani, R.; Zaman, N.K.; et al. Comprehensive evaluation of the integrated membrane contactor-microalgae photobioreactor system for simultaneous H2 purification and CO2 treatment from biomass fermented gases. J. Clean. Prod. 2021, 318, 128608.
- 6.
Fu, J.; Huang, Y.; Xia, A.; et al. How the sulfur dioxide in the flue gas influence microalgal carbon dioxide fixation: From gas dissolution to cells growth. Renew. Energy 2022, 198, 114–122.
- 7.
Tamburic, B.; Evenhuis, C.R.; Crosswell, J.R.; et al. An empirical process model to predict microalgal carbon fixation rates in photobioreactors. Algal Res. 2018, 31, 334–346.
- 8.
Zhao, B.; Su, Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew. Sustain. Energy Rev. 2014, 31, 121–132.
- 9.
de Pablo, J.G.; Lindley, M.; Hiramatsu, K.; et al. Label-free live microalgal starch screening via Raman flow cytometry. Algal Res. 2023, 70, 102993.
- 10.
Feng, L.; Wang, Z.; Jia, D.; et al. Functional metabolism pathways of significantly regulated genes in Nannochloropsis oceanica with various nitrogen/phosphorus nutrients for CO2 fixation. Sci. Total Environ. 2023, 883, 163318.
- 11.
Yong, Y.G.; Ong, H.C.; Show, P.L.; et al. Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent. Energy Convers. Manag. 2018, 165, 152–162.
- 12.
Zhang, C.; Ho, S.-H.; Chen, W.-H.; et al. Oxidative torrefaction performance of microalga Nannochloropsis Oceanica towards an upgraded microalgal solid biofuel. J. Biotechnol. 2021, 338, 81–90.
- 13.
Zhang, C.; Li, F.; Ho, S.-H.; et al. Oxidative torrefaction of microalga Nannochloropsis Oceanica activated by potassium carbonate for solid biofuel production. Environ. Res. 2022, 212, 113389.
- 14.
Ubando, A.T.; Rivera, D.R.T.; Chen, W.-H.; et al. A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes. Bioresour. Technol. 2019, 291, 121837.
- 15.
Lin, J.-Y.; Xue, C.; Tan, S.-I.; et al. Pyridoxal kinase PdxY mediated carbon dioxide assimilation to enhance the biomass in Chlamydomonas reinhardtii CC-400. Bioresour. Technol. 2021, 322, 124530.
- 16.
Lababpour, A. A dynamic model for the prediction of flue gas carbon dioxide removal by the microalga Chlorella vulgaris in column photobioreactor. Alex. Eng. J. 2018, 57, 3311–3320.
- 17.
Zhang, C.; Wang, C.; Cao, G.; et al. Comparison and characterization of property variation of microalgal biomass with non-oxidative and oxidative torrefaction. Fuel 2019, 246, 375–385.
- 18.
Lu, Y.; Mu, D.; Xue, Z.; et al. Life cycle assessment of industrial production of microalgal oil from heterotrophic fermentation. Algal Res. 2021, 58, 102404.
- 19.
Sun, J.; Yang, L.; Xiao, S.; et al. A promising microalgal wastewater cyclic cultivation technology: Dynamic simulations, economic viability, and environmental suitability. Water Res. 2022, 217, 118411.
- 20.
Ma, J.; Yang, L.; Wang, D.; et al. Digitalization in response to carbon neutrality: Mechanisms, effects and prospects. Renew. Sustain. Energy Rev. 2024, 191, 114138.
- 21.
Yang, Y.; Tong, L.; Yin, S.; et al. Status and challenges of applications and industry chain technologies of hydrogen in the context of carbon neutrality. J. Clean. Prod. 2022, 376, 134347.
- 22.
Gao, H.; Liu, Q.; Yan, C.; et al. Mitigation of greenhouse gas emissions and improved yield by plastic mulching in rice production. Sci. Total Environ. 2023, 880, 162984.
- 23.
Dubey, A.; Arora, A. Advancements in carbon capture technologies: A review. J. Clean. Prod. 2022, 373, 133932.
- 24.
Zeng, J.; Yang, M. Digital technology and carbon emissions: Evidence from China. J. Clean. Prod. 2023, 430, 139765.
- 25.
Liu, Y.; Weng, Z.; Han, B.; et al. Recent studies on the comprehensive application of biochar in multiple environmental fields. J. Clean. Prod. 2023, 421, 138495.
- 26.
Goveas, L.C.; Nayak, S.; Vinayagam, R.; et al. Microalgal remediation and valorisation of polluted wastewaters for zero-carbon circular bioeconomy. Bioresour. Technol. 2022, 365, 128169.
- 27.
Ruiz-Ruiz, P.; Gómez-Borraz, T.L.; Saldivar, A.; et al. Diluted methane mitigation by a co-culture of alkaliphilic methanotrophs and the microalgae Scenedesmus obtusiusculus towards carbon neutrality. Biochem. Eng. J. 2024, 203, 109211.
- 28.
Zhang, J.-T.; Wang, J.-X.; Liu, Y.; et al. Microalgal-bacterial biofilms for wastewater treatment: Operations, performances, mechanisms, and uncertainties. Sci. Total Environ. 2024, 907, 167974.
- 29.
da Rosa, G.M.; de Morais, M.G.; Costa, J.A.V. Green alga cultivation with monoethanolamine: Evaluation of CO2 fixation and macromolecule production. Bioresour. Technol. 2018, 261, 206–212.
- 30.
Kuo, C.-M.; Jian, J.-F.; Sun, Y.-L.; et al. An efficient Photobioreactors/Raceway circulating system combined with alkaline-CO2 capturing medium for microalgal cultivation. Bioresour. Technol. 2018, 266, 398–406.
- 31.
Ketheesan, B.; Nirmalakhandan, N. Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor. Bioresour. Technol. 2012, 108, 196–202.
- 32.
Cheng, J.; Guo, W.; Ameer Ali, K.; et al. Promoting helix pitch and trichome length to improve biomass harvesting efficiency and carbon dioxide fixation rate by Spirulina sp. in 660 m2 raceway ponds under purified carbon dioxide from a coal chemical flue gas. Bioresour. Technol. 2018, 261, 76–85.
- 33.
Basu, S.; Sarma Roy, A.; Ghoshal, A.K.; et al. Operational strategies for maximizing CO2 utilization efficiency by the novel microalga Scenedesmus obliquus SA1 cultivated in lab scale photobioreactor. Algal Res. 2015, 12, 249–257.
- 34.
Duarte, J.H.; Fanka, L.S.; Costa, J.A.V. Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour. Technol. 2016, 214, 159–165.
- 35.
Lam, M.K.; Lee, K.T. Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. Int. J. Greenh. Gas Control 2013, 14, 169–176.
- 36.
da Rosa, G.M.; Moraes, L.; Cardias, B.B.; et al. Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresour. Technol. 2015, 192, 321–327.
- 37.
Kargupta, W.; Ganesh, A.; Mukherji, S. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor. Bioresour. Technol. 2015, 180, 370–375.
- 38.
Kumar, A.; Yuan, X.; Sahu, A. K.; et al. A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: A process engineering approach. J. Chem. Technol. Biotechnol. 2010, 85, 387–394.
- 39.
Arroyo, C.A.; Contreras, J.L.; Zeifert, B.; et al. CO2 Capture of the Gas Emission, Using a Catalytic Converter and Airlift Bioreactors with the Microalga Scenedesmus dimorphus. Appl. Sci. 2019, 9, 3212.
- 40.
Zhao, X.; Zhang, T.; Dang, B.; et al. Microalgae-based constructed wetland system enhances nitrogen removal and reduce carbon emissions: Performance and mechanisms. Sci. Total Environ. 2023, 877, 162883.
- 41.
Li, P.; Wang, D.; Hu, Z.; et al. Insight into the potential mechanism of bicarbonate assimilation promoted by mixotrophic in CO2 absorption and microalgae conversion system. Chemosphere 2024, 349, 140903.
- 42.
Burlacot, A.; Peltier, G. Energy crosstalk between photosynthesis and the algal CO2-concentrating mechanisms. Trends Plant Sci. 2023, 28, 795–807.
- 43.
Yan, Z.; Shen, T.; Li, W.; et al. Contribution of microalgae to carbon sequestration in a natural karst wetland aquatic ecosystem: An in-situ mesocosm study. Sci. Total Environ. 2021, 768, 144387.
- 44.
Li, P.; Luo, Y.; Yuan, X. Life cycle and techno-economic assessment of source-separated wastewater-integrated microalgae biofuel production plant: A nutrient organization approach. Bioresour. Technol. 2022, 344, 126230.
- 45.
Lucas, B.F.; Brunner, T.A. Attitudes and perceptions towards microalgae as an alternative food: A consumer segmentation in Switzerland. Algal Res. 2024, 78, 103386.
- 46.
Chen, S.; Li, X.; Ma, X.; et al. Lighting the way to sustainable development: Physiological response and light control strategy in microalgae-based wastewater treatment under illumination. Sci. Total Environ. 2023, 903, 166298.
- 47.
Oliva, G.; Galang, M.G.; Buonerba, A.; et al. Carbon capture and utilization in waste to energy approach by leading-edge algal photo-bioreactors: The influence of the illumination wavelength. Case Stud. Chem. Environ. Eng. 2023, 7, 100348.
- 48.
Zhang, C.; Ho, S.-H.; Chen, W.-H.; et al. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl. Energy 2018, 220, 598–604.
- 49.
Chen, W.H.; Lin, B.J.; Lin, Y.Y.; et al. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 2021, 82, 100887.
- 50.
Zhang, C.; Zhan, Y.; Chen, W.-H.; et al. Correlations between different fuel property indicators and carbonization degree of oxidatively torrefied microalgal biomass. Energy 2024, 286, 129693.
- 51.
Chen, W.-H.; Aniza, R.; Arpia, A.A.; et al. A comparative analysis of biomass torrefaction severity index prediction from machine learning. Appl. Energy 2022, 324, 119689.
- 52.
Zhang, C.; Chen, W.-H.; Ho, S.-H.; et al. Comparative advantages analysis of oxidative torrefaction for solid biofuel production and property upgrading. Bioresour. Technol. 2023, 386, 129531.
- 53.
Zhang, C.; Yang, W.; Chen, W.-H.; et al. Effect of torrefaction on the structure and reactivity of rice straw as well as life cycle assessment of torrefaction process. Energy 2021, 240, 122470.
- 54.
Chen, W.H.; Lin, B.J.; Colin, B.; et al. Hygroscopic transformation of woody biomass torrefaction for carbon storage. Appl. Energy 2018, 231, 768–776.
- 55.
Zhang, C.; Chen, W.-H.; Zhang, Y.; et al. Influence of microorganisms on the variation of raw and oxidatively torrefied microalgal biomass properties. Energy 2023, 276, 127612.
- 56.
Song, Y.; Chen, Z.; Li, Y.; et al. Regulation of energy properties and thermal behavior of bio-coal from lignocellulosic biomass using torrefaction. Energy 2024, 289, 129949.
- 57.
Jiang, Y.; Zhou, G.; Zhang, H.; et al. Coupling effects of heating pelleting and torrefaction on black pellets production from microalga Nannochloropsis Oceanica residues. Fuel 2023, 353, 129007.
- 58.
Mei, Y.; Chen, Y.; Zhang, S.; et al. Effect of temperature oscillation on torrefaction and pyrolysis of elm branches. Energy 2023, 271, 127055.
- 59.
Ho, S.-H.; Zhang, C.; Tao, F.; et al. Microalgal Torrefaction for Solid Biofuel Production. Trends Biotechnol. 2020, 38, 1023–1033.
- 60.
Zhang, C.; Wang, M.; Chen, W.-H.; et al. A comparison of conventional and oxidative torrefaction of microalga Nannochloropsis Oceanica through energy efficiency analysis and life cycle assessment. J. Clean. Prod. 2022, 369, 133236.
- 61.
Bates, R.B.; Ghoniem, A.F. Biomass torrefaction: Modeling of volatile and solid product evolution kinetics. Bioresour. Technol. 2012, 124, 460–469.
- 62.
Chen, W.H.; Wu, Z.Y.; Chang, J.S. Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2014, 155, 245–251.
- 63.
Chen, Y.C.; Chen, W.H.; Lin, B.J.; et al. Impact of torrefaction on the composition, structure and reactivity of a microalga residue. Appl. Energy 2016, 181, 110–119.
- 64.
Chen, W.H.; Huang, M.Y.; Chang, J.S.; et al. An energy analysis of torrefaction for upgrading microalga residue as a solid fuel. Bioresour. Technolgy 2015, 185, 285–293.
- 65.
Chen, W.H.; Huang, M.Y.; Chang, J.S.; et al. Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresour. Technol. 2014, 169, 258–264.
- 66.
Chen, W.H.; Huang, M.Y.; Chang, J.S.; et al. Torrefaction operation and optimization of microalga residue for energy densification and utilization. Appl. Energy 2015, 154, 622–630.
- 67.
Bach, Q.V.; Chen, W.H.; Lin, S.C.; et al. Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Convers. Manag. 2016, 141, 163–170.
- 68.
Bach, Q.V.; Chen, W.H.; Sheen, H.K.; et al. Gasification kinetics of raw and wet-torrefied microalgae Chlorella vulgaris ESP-31 in carbon dioxide. Bioresour. Technol. 2017, 244, 1393–1399.
- 69.
Phusunti, N.; Phetwarotai, W.; Tekasakul, S. Effects of torrefaction on physical properties, chemical composition and reactivity of microalgae. Korean J. Chem. Eng. 2017, 35, 503–510.
- 70.
Ho, S.-H.; Zhang, C.; Chen, W.-H.; et al. Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresour. Technol. 2018, 264, 7–16.
- 71.
Wu, K.T.; Tsai, C.J.; Chen, C.S.; et al. The characteristics of torrefied microalgae. Appl. Energy 2012, 100, 52–57.
- 72.
Moreira, D.; Pires, J.C.M. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresour. Technol. 2016, 215, 371–379.
- 73.
Raheem, A.; Prinsen, P.; Vuppaladadiyam, A.K.; et al. A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. J. Clean. Prod. 2018, 181, 42–59.
- 74.
Song, W.; He, Y.; Huang, R.; et al. Life cycle assessment of deep-eutectic-solvent-assisted hydrothermal disintegration of microalgae for biodiesel and biogas co-production. Appl. Energy 2023, 335, 120758.
- 75.
Wu, G.; Tham, P.E.; Chew, K.W.; et al. Net zero emission in circular bioeconomy from microalgae biochar production: A renewed possibility. Bioresour. Technol. 2023, 388, 129748.
- 76.
Yu, K.L.; Chen, W.-H.; Sheen, H.-K.; et al. Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment. Renew. Energy 2020, 156, 349–360.
- 77.
Yu, K.L.; Show, P.L.; Ong, H.C.; et al. Microalgae from wastewater treatment to biochar—Feedstock preparation and conversion technologies. Energy Convers. Manag. 2017, 150, 1–13.
- 78.
Sadvakasova, A.K.; Kossalbayev, B.D.; Bauenova, M.O.; et al. Microalgae as a key tool in achieving carbon neutrality for bioproduct production. Algal Res. 2023, 72, 103096.
- 79.
Min Woon, J.; Shiong Khoo, K.; Akermi, M.; et al. Reviewing biohydrogen production from microalgal cells through fundamental mechanisms, enzymes and factors that engendering new challenges and prospects. Fuel 2023, 346, 128312.
- 80.
Zhang, C.; Chen, W.-H.; Ho, S.-H. Economic feasibility analysis and environmental impact assessment for the comparison of conventional and microwave torrefaction of spent coffee grounds. Biomass Bioenergy 2023, 168, 106652.
- 81.
Bhar, R.; Tiwari, B.R.; Sarmah, A.K.; et al. A comparative life cycle assessment of different pyrolysis-pretreatment pathways of wood biomass for levoglucosan production. Bioresour. Technol. 2022, 356, 127305.
- 82.
Zhu, X.; Labianca, C.; He, M.; et al. Life-cycle assessment of pyrolysis processes for sustainable production of biochar from agro-residues. Bioresour. Technol. 2022, 360, 127601.
- 83.
Zhou, H.; Zhang, W.; Li, L.; et al. Environmental impact and optimization of lake dredged-sludge treatment and disposal technologies based on life cycle assessment (LCA) analysis. Sci. Total Environ. 2021, 787, 147703.
- 84.
Lee, J.G.; Chae, H.G.; Cho, S.R.; et al. Impact of plastic film mulching on global warming in entire chemical and organic cropping systems: Life cycle assessment. J. Clean. Prod. 2021, 308, 127256.
- 85.
Puig-Samper Naranjo, G.; Bolonio, D.; Ortega, M.F.; et al. Comparative life cycle assessment of conventional, electric and hybrid passenger vehicles in Spain. J. Clean. Prod. 2021, 291, 125883.
- 86.
Cvetković, S.M.; Radoičić, T.K.; Kijevčanin, M.; et al. Life Cycle Energy Assessment of biohydrogen production via biogas steam reforming: Case study of biogas plant on a farm in Serbia. Int. J. Hydrog. Energy 2021, 46, 14130–14137.
- 87.
Hosseinzadeh-Bandbafha, H.; Rafiee, S.; Mohammadi, P.; et al. Exergetic, economic, and environmental life cycle assessment analyses of a heavy-duty tractor diesel engine fueled with diesel–biodiesel-bioethanol blends. Energy Convers. Manag. 2021, 241, 114300.
- 88.
Li, R.; Zhang, C.; Chen, W.-H.; et al. Multistage utilization of soybean straw-derived P-doped biochar for aquatic pollutant removal and biofuel usage. Bioresour. Technol. 2023, 387, 129657.
- 89.
Liu, G.; Zhang, X.; Liu, H.; et al. Biochar/layered double hydroxides composites as catalysts for treatment of organic wastewater by advanced oxidation processes: A review. Environ. Res. 2023, 234, 116534.
- 90.
Quiroz, D.; Greene, J.M.; Quinn, J.C. Regionalized Life-Cycle Water Impacts of Microalgal-Based Biofuels in the United States. Environ. Sci. Technol. 2022, 56, 16400–16409.
- 91.
Cao, B.; Zhang, T.; Zhang, W.; et al. Enhanced technology based for sewage sludge deep dewatering: A critical review. Water Res. 2021, 189, 116650.
- 92.
Zhang, J.; Zhang, X.; Yang, M.; et al. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. Bioresour. Technol. 2021, 322, 124522.
- 93.
Thengane, S.K.; Burek, J.; Kung, K.S.; et al. Life cycle assessment of rice husk torrefaction and prospects for decentralized facilities at rice mills. J. Clean. Prod. 2020, 275, 123177.
- 94.
Huang, X.; Bai, S.; Liu, Z.; et al. Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: Direct high-density ethanol production with competitive life cycle impacts. Green Chem. 2020, 22, 153–162.
- 95.
Wang, X.; Liu, F.; Li, Y.; et al. Development of a facile and bi-functional superhydrophobic suspension and its applications in superhydrophobic coatings and aerogels in high-efficiency oil–water separation. Green Chem. 2020, 22, 7424–7434.
- 96.
Zhang, L.-J.; Qian, L.; Ding, L.-Y.; et al. Ecological and toxicological assessments of anthropogenic contaminants based on environmental metabolomics. Environ. Sci. Ecotechnology 2021, 5, 100081.
- 97.
Aresti, L.; Christodoulides, P.; Florides, G.A. An investigation on the environmental impact of various Ground Heat Exchangers configurations. Renew. Energy 2021, 171, 592–605.
- 98.
Choi, H.I.; Lee, J.S.; Choi, J.W.; et al. Performance and potential appraisal of various microalgae as direct combustion fuel. Bioresour. Technol. 2019, 273, 341–349.
- 99.
Sun, P.; Liu, C.; Li, A.; et al. Using carbon dioxide-added microalgal-bacterial granular sludge for carbon-neutral municipal wastewater treatment under outdoor conditions: Performance, granule characteristics and environmental sustainability. Sci. Total Environ. 2022, 848, 157657.
- 100.
Valente, A.; Iribarren, D.; Dufour, J. How do methodological choices affect the carbon footprint of microalgal biodiesel? A harmonised life cycle assessment. J. Clean. Prod. 2019, 207, 560–568.
- 101.
Zaimes, G.G.; Khanna, V. Integrating the Role of Thermodynamics in LCA: A Case Study of Microalgal Biofuels. In Encyclopedia of Sustainable Technologies, Abraham, M.A., Ed.; Elsevier: Oxford, 2017; pp. 397–406.
- 102.
Liang, D.; Wu, J.; Lu, L.; et al. Coupling with in-situ electrochemical reactive chlorine species generation and two-phase partitioning method for enhanced microalgal biodiesel production. Bioresour. Technol. 2022, 364, 128100.
- 103.
Czyrnek-Delêtre, M.M.; Rocca, S.; Agostini, A.; et al. Life cycle assessment of seaweed biomethane, generated from seaweed sourced from integrated multi-trophic aquaculture in temperate oceanic climates. Appl. Energy 2017, 196, 34–50.
- 104.
Wang, S.; Lu, W.; Esakkimuthu, S.; et al. Life cycle assessment of carbon-based adsorbent preparation from algal biomass. J. Clean. Prod. 2023, 427, 139269.