- 1.
Chen, W.H. Progress in Green Energy and Fuel for Sustainability. Green Energy Fuel Res. 2024, 1, 13–22.
- 2.
Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 2019, 365, eaaw6974.
- 3.
Lee, J.; Im, G.; Yoo, J.H.; et al. Development of greenhouse gas (CO2) emission factor for Korean coal briquettes. Energy Sources Part A Recovery Util. Environ. Eff. 2015, 37, 1415–1423.
- 4.
Zhang, C.; Fang, J.; Zhan, Y.; et al. Life Cycle Assessment of Microalgal Carbon Fixation and Torrefaction for Carbon Neutralization: A State-of-the-Art Review. Green Energy Fuel Res. 2024, 23–38.
- 5.
Wu, H.; Lyu, Y.; Wang, R.; et al. Power Generation Enhancement in a Solar Energy and Biomass-Based Distributed Energy System using H2O/CO2 Hybrid Gasification. J. Therm. Sci. 2024, 33, 1657–1671.
- 6.
Zhang, Y.; Wang, X. Geographical spatial distribution and productivity dynamic change of eucalyptus plantations in China. Sci. Rep. 2021, 11, 19764.
- 7.
Penín, L.; López, M.; Santos, V.; et al. Technologies for Eucalyptus wood processing in the scope of biorefineries: A comprehensive review. Bioresour. Technol. 2020, 311, 123528.
- 8.
Seng Hua, L.; Wei Chen, L.; Antov, P.; et al. Engineering wood products from Eucalyptus spp. Adv. Mater. Sci. Eng. 2022, 1, 8000780.
- 9.
Kabir, M.G.; Wang, Y.; Abuhena, M.; et al. A bio-sustainable approach for reducing Eucalyptus tree-caused agricultural ecosystem hazards employing Trichoderma bio-sustained spores and mycorrhizal networks. Front. Microbiol. 2023, 13, 1071392.
- 10.
Louw, J.; Schwarz, C.E.; Burger, A.J. Supercritical water gasification of eucalyptus grandis and related pyrolysis char: Effect of feedstock composition. Bioresour. Technol. 2019, 216, 1030–1039.
- 11.
Kosanić, T.R.; Ćeranić, M.B.; Đurić, S.N.; et al. Experimental investigation of pyrolysis process of woody biomass mixture. J. Therm. Sci. 2014, 23, 290–296.
- 12.
Zhang, X.; Yang, X.; Yuan, X.; et al. Effect of pyrolysis temperature on composition, carbon fraction and abiotic stability of straw biochars: Correlation and quantitative analysis. Carbon Res. 2022, 1, 17.
- 13.
Zhang, Y.; Hong, X.; Shen, X.; et al. Heavy oil catalytic upgrading with microwave heating over a microwave absorbing catalyst USY/AC/Al2O3. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 229–236.
- 14.
Kostas, E.T.; Beneroso, D.; Robinson, J.P. The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass. Renew. Sustain. Energy Rev. 2017, 77, 12–27.
- 15.
Ho, S.H.; Zhang, C.; Chen, W.H.; et al. Characterization of biomass waste torrefaction under conventional and microwave heating. Bioresour. Technol. 2018, 264, 7–16.
- 16.
Sakhiya, A.K.; Anand, A.; Kaushal, P. Production, activation, and applications of biochar in recent times. Biochar 2020, 2, 253–285.
- 17.
Ren, J.; Jiang, J.; Wang, J.; et al. Variable frequency microwave induced CO2 Boudouard reaction over biochar. Biochar 2024, 6, 20.
- 18.
Peymanfar, R.; Ershad, Z.S.; Selseleh-Zakerin, E.; et al. Graphite-like carbon nitride (g-C3N4): A promising microwave absorber. Ceram. Int. 2022, 48, 16461–16476.
- 19.
Li, L.; Ma, X.; Xu, Q.; et al. Influence of microwave power, metal oxides and metal salts on the pyrolysis of algae. Bioresour. Technol. 2013, 142, 469–474.
- 20.
Chen, G.; Li, J.; Cheng, Z.; et al. Investigation on model compound of biomass gasification tar cracking in microwave furnace: Comparative research. Appl. Energy 2018, 217, 249–257.
- 21.
Fan, S.; Zhang, Y.; Cui, L.; et al. Conversion of polystyrene plastic into aviation fuel through microwave-assisted pyrolysis as affected by iron-based microwave absorbents. ACS Sustain. Chem. Eng. 2023, 11, 1054–1066.
- 22.
Ke, C.; Liu, T.; Zhang, Y.; et al. Energy absorption performances of silicon carbide particles during microwave heating process. Chem. Eng. Process.-Process Intensif. 2022, 172, 108796.
- 23.
Singh, R.; Lindenberger, C.; Chawade, A.; et al. Unveiling the microwave heating performance of biochar as microwave absorber for microwave-assisted pyrolysis technology. Sci. Rep. 2024, 14, 9222.
- 24.
Tamang, S.; Aravindan, S. 3D numerical modelling of microwave heating of SiC susceptor. Appl. Therm. Eng. 2019, 162, 114250.
- 25.
Chen, Z.; Zhu, Q.; Wang, X.; et al. Pyrolysis behaviors and kinetic studies on eucalyptus residues using thermogravimetric analysis. Energy Convers. Manag. 2015, 105, 251–259.
- 26.
Amutio, M.; Lopez, G.; Alvarez, J.; et al. Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor. Bioresour. Technol. 2015, 194, 225–232.
- 27.
Sánchez-Borrego, F.J.; Alvarez-Mateos, P.; Garcia-Martin, J.F. Biodiesel and other value-added products from bio-oil obtained from agrifood waste. Processes 2021, 9, 797.
- 28.
Han, Y.; Paiva Pinheiro Pires, A.; Denson, M.; et al. Ternary phase diagram of water/bio-oil/organic solvent for bio-oil fractionation. Energy Fuels 2020, 34, 16250–16264.
- 29.
da Silveira Rossi, R.A.; Dai, L.; de Souza Barrozo, M.A.; et al. Bio-fuel production from catalytic microwave-assisted pyrolysis of the microalgae Schizochytrium limacinum in a tandem catalytic bed. Chem. Eng. J. 2023, 478, 147223.
- 30.
Ou, X.; Wu, C.; Shi, K.; et al. Structured ZSM-5/SiC foam catalysts for bio-oils upgrading. Appl. Catal. A Gen. 2020, 599, 117626.
- 31.
Yu, Z.; Wang, Y.; Jiang, L.; et al. Conversion of woody oil into bio-oil in a downdraft reactor using a novel silicon carbide foam supported MCM41 composite catalyst. RSC Adv. 2019, 9, 19729–19739.
- 32.
Tuci, G.; Liu, Y.; Rossin, A.; et al. Porous silicon carbide (SiC): A chance for improving catalysts or just another active-phase carrier? Chem. Rev. 2021, 121, 10559–10665.
- 33.
Seehar, T.H.; Toor, S.S.; Sharma, K.; et al. Influence of process conditions on hydrothermal liquefaction of eucalyptus biomass for biocrude production and investigation of the inorganics distribution. Sustain. Energy Fuels 2021, 5, 1477–1487.
- 34.
Cui, L.; Qin, N.; Li, H.; et al. Heating performances of corn straw particles in a microwave chamber. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 7186–7197.
- 35.
Santhosh, B.; Ionescu, E.; Andreolli, F.; et al. Effect of pyrolysis temperature on the microstructure and thermal conductivity of polymer-derived monolithic and porous SiC ceramics. J. Eur. Ceram. Soc. 2021, 41, 1151–1162.
- 36.
Zhang, Z.; Huang, K.; Mao, C.; et al. Microwave assisted catalytic pyrolysis of bagasse to produce hydrogen. Int. J. Hydrog. Energy 2022, 47, 35626–35634.
- 37.
Fan, Y.; Jin, L.; Ji, W.; et al. Microwave-induced carbonization of rapeseed shell for bio-oil and bio-char: Multi-variable optimization and microwave absorber effect. Energy Convers. Manag. 2019, 191, 23–38.
- 38.
Reddy, B.R.; Malhotra, A.; Najmi, S.; et al. Microwave assisted heating of plastic waste: Effect of plastic/susceptor (SiC) contacting patterns. Chem. Eng. Process.-Process Intensif. 2022, 182, 109202.
- 39.
Fan, L.; Song, H.; Lu, Q.; et al. Screening microwave susceptors for microwave-assisted pyrolysis of lignin: Comparison of product yield and chemical profile. J. Anal. Appl. Pyrolysis 2019, 142, 104623.