- 1.
Lee, K.-T.; Cai, Y.-S.; Hou, Q.-Y.; et al. A Brief Overview of Green Hydrogen on Production, Regulations, and Commercialization. Green Energy Fuel Res. 2024, 1, 3–12.
- 2.
Obiora, N.K.; Ujah, C.O.; Asadu, C.O.; et al. Production of hydrogen energy from biomass: Prospects and challenges. Green Technol. Sustain. 2024, 2, 100100.
- 3.
Singh, S.K.; Tiwari, A.K. Solar-powered hydrogen production: Advancements, challenges, and the path to net-zero emissions. Int. J. Hydrogen Energy 2024, 84, 549–579.
- 4.
Dharani, S.; Vadivel, S.; Gnanasekaran, L.; et al. S-scheme heterojunction photocatalysts for hydrogen production: Current progress and future prospects. Fuel 2023, 349, 128688.
- 5.
Anekwe, I.M.S.; Akpasi, S.O.; Enemuo, E.M.; et al. Innovations in catalytic understanding: A journey through advanced characterization. Mater. Today Catal. 2024, 7, 100061.
- 6.
Zhang, J.; Ma, C.; Jia, S.; et al. Electrocatalysts Design Guided by Active Intermediates of Hydrogen Evolution Reaction. Adv. Energy Mater. 2023, 13, 2302436.
- 7.
Naqvi, S.R.; Kazmi, B.; Ammar Taqvi, S.A.; et al. Techno economic analysis for advanced methods of green hydrogen production. Curr. Opin. Green Sustain. Chem. 2024, 48, 100939.
- 8.
Office of Fossil Energy. Hydrogen Strategy, Enabling a Low Carbon Economy; Office of Fossil Energy: Washington, DC, USA, 2020.
- 9.
Karaca, A.E.; Qureshy, A.M.M.I.; Dincer, I. An overview and critical assessment of thermochemical hydrogen production methods. J. Clean. Prod. 2023, 385, 135706.
- 10.
Chen, W.-H.; Biswas, P.P.; Ong, H.C.; et al. A critical and systematic review of sustainable hydrogen production from ethanol/bioethanol: Steam reforming, partial oxidation, and autothermal reforming. Fuel 2023, 333, 126526.
- 11.
Ivanenko, A.A.; Laikova, A.A.; Zhuravleva, E.A.; et al. Biological production of hydrogen: From basic principles to the latest advances in process improvement. Int. J. Hydrogen Energy 2024, 55, 740–755.
- 12.
Imran, S.; Hussain, M. Emerging trends in water splitting innovations for solar hydrogen production: Analysis, comparison, and economical insights. Int. J. Hydrogen Energy 2024, 77, 975–996.
- 13.
Shiva Kumar, S.; Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022, 8, 13793–13813.
- 14.
Oni, A.O.; Anaya, K.; Giwa, T.; et al. Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Convers. Manag. 2022, 254, 115245.
- 15.
Dermühl, S.; Riedel, U. A comparison of the most promising low-carbon hydrogen production technologies. Fuel 2023, 340, 127478.
- 16.
Bento, C.; Lopes, T.F.; Rodrigues, P.; et al. Biogas reforming as a sustainable solution for hydrogen production: Comparative environmental metrics with steam-methane reforming and water electrolysis in the Portuguese context. Int. J. Hydrogen Energy 2024, 66, 661–675.
- 17.
Li, Y.; Lin, R.; O’Shea, R.; et al. A perspective on three sustainable hydrogen production technologies with a focus on technology readiness level, cost of production and life cycle environmental impacts. Heliyon 2024, 10, e26637.
- 18.
Saravanan, P.; Khan, M.R.; Yee, C.S.; et al. 7—An overview of water electrolysis technologies for the production of hydrogen. In New Dimensions in Production and Utilization of Hydrogen; Nanda, S., Vo, D.-V.N., Nguyen-Tri, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–190.
- 19.
Green Hydrogen Cost Reduction; International Renewable Energy Agency: Masdar City, Abu Dhabi, 2020.
- 20.
Kumar, S.S.; Lim, H. Recent advances in hydrogen production through proton exchange membrane water electrolysis—A review. Sustain. Energy Fuels 2023, 7, 3560–3583.
https://doi.org/10.1039/D3SE00336A.
- 21.
Bianchi, F.R.; Bosio, B. Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells. Sustainability 2021, 13, 4777.
- 22.
Incer-Valverde, J.; Korayem, A.; Tsatsaronis, G.; et al. “Colors” of hydrogen: Definitions and carbon intensity. Energy Convers. Manag. 2023, 291, 117294.
- 23.
Swadi, M.; Jasim Kadhim, D.; Salem, M.; et al. Investigating and predicting the role of photovoltaic, wind, and hydrogen energies in sustainable global energy evolution. Glob. Energy Interconnect. 2024, 7, 429–445.
- 24.
AlHumaidan, F.S.; Absi Halabi, M.; Rana, M.S.; et al. Blue hydrogen: Current status and future technologies. Energy Convers. Manag. 2023, 283, 116840.
- 25.
Xu, G.; Huang, Z.; Jiang, M.; et al. “Gray” Prediction of Carbon Neutral Pathways in the G7 Economies by 2050. Appl. Energy 2024, 373, 123924.
- 26.
Pathak, P.K.; Yadav, A.K.; Padmanaban, S. Transition toward emission-free energy systems by 2050: Potential role of hydrogen. Int. J. Hydrogen Energy 2023, 48, 9921–9927.
- 27.
Global Hydrogen Review 2024; International Energy Agency: Paris, France, 2024.
- 28.
Global Hydrogen Review 2022; International Energy Agency: Paris, France, 2022.
- 29.
Cao, D.N.; Hoang, A.T.; Luu, H.Q.; et al. Effects of injection pressure on the NOx and PM emission control of diesel engine: A review under the aspect of PCCI combustion condition. Energy Sources Part A: Recovery Util. Environ. Eff. 2024, 46, 7414–7431.
- 30.
Józsa, V. Mixture temperature-controlled combustion: A revolutionary concept for ultra-low NOx emission. Fuel 2021, 291, 120200.
- 31.
Stępień, Z. A comprehensive overview of hydrogen-fueled internal combustion engines: Achievements and future challenges. Energies 2021, 14, 6504.
- 32.
Pitsch, H. The transition to sustainable combustion: Hydrogen-and carbon-based future fuels and methods for dealing with their challenges. Proc. Combust. Inst. 2024, 40, 105638.
- 33.
Le, T.T.; Sharma, P.; Bora, B.J.; et al. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Int. J. Hydrogen Energy 2024, 54, 791–816.
- 34.
Strollo, J.; Peluso, S.; O’Connor, J. Effect of hydrogen on steady-state and transient combustion instability characteristics. J. Eng. Gas Turbines Power 2021, 143, 071023.
- 35.
Taamallah, S.; Vogiatzaki, K.; Alzahrani, F.M.; et al. Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: Technology, fundamentals, and numerical simulations. Appl. Energy 2015, 154, 1020–1047.
- 36.
- 37.
Glanville, P.; Fridlyand, A.; Sutherland, B.; et al. Impact of hydrogen/natural gas blends on partially premixed combustion equipment: NOx emission and operational performance. Energies 2022, 15, 1706.
- 38.
Mao, G.; Shi, T.; Mao, C.; et al. Prediction of NOx emission from two-stage combustion of NH3–H2 mixtures under various conditions using artificial neural networks. Int. J. Hydrogen Energy 2024, 49, 1414–1424.
- 39.
Xu, S.; Chen, Y.; Tian, Z.; et al. NO emission reduction characteristics of CH4/H2 staged MILD combustion over a wide range of hydrogen-blending ratios. Fuel 2024, 372, 132239.
- 40.
Sekar, M.; Selim, M.Y.E.; Saleh, H.E.; et al. Utilization of hydrogen and methane as energy carriers with exhaust gas recirculation for sustainable diesel engines. Energy Convers. Manag. X 2024, 23, 100618.
- 41.
Masoumi, S.; Houshfar, E.; Ashjaee, M. Experimental and numerical analysis of ammonia/hydrogen combustion under artificial exhaust gas recirculation. Fuel 2024, 357, 130081.
- 42.
Kim, H.J.; Jo, S.; Kwon, S.; et al. NOx emission analysis according to after-treatment devices (SCR, LNT + SCR, SDPF), and control strategies in Euro-6 light-duty diesel vehicles. Fuel 2022, 310, 122297.
- 43.
Li, C.; Xiong, Z.; Du, Y.; et al. Promotional effect of tungsten modification on magnetic iron oxide catalyst for selective catalytic reduction of NO with NH3. J. Energy Inst. 2020, 93, 1809–1818.