- 1.
UNEP. Think Eat Save: Tracking Progress to Halve Global Food Waste; UNEP: Nairobi, Kenya, 2024.
- 2.
Broun, R.; Sattler, M. A comparison of greenhouse gas emissions and potential electricity recovery from conventional and bioreactor landfills. J. Clean. Prod. 2016, 112, 2664–2673.
- 3.
Awasthi, M.K.; Chen, H.; Awasthi, S.K.; et al. Greenhouse gas emissions through biological processing of solid waste and their global warming potential. Biol. Process. Solid Waste 2019, 2019, 111–127.
- 4.
Awasthi, M.K.; Sarsaiya, S.; Wang, Q.; et al. Mitigation of global warming potential for cleaner composting. Biosynthetic Technol. Environ. Chall. 2018, 12, 271–305.
- 5.
Munesue, Y.; Masui, T.; Fushima, T. The effects of reducing food losses and food waste on global food insecurity, natural resources, and greenhouse gas emissions. Environ. Econ. Policy Stud. 2015, 17, 43–77.
https://doi.org/10.1007/s10018-014-0083-0.
- 6.
Mohanty, A.; Mankoti, M.; Rout, P.R.; et al. Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. Int. J. Food Microbiol. 2022, 365, 109538.
- 7.
Singh, P.K.; Mohanty, P.; Mishra, S.; et al. Food waste valorisation for biogas-based bioenergy production in circular bioeconomy: Opportunities, challenges, and future developments. Front. Energy Res. 2022, 10, 903775.
- 8.
Leong, H.Y.; Chang, C.-K.; Khoo, K.S.; et al. Waste biorefinery towards a sustainable circular bioeconomy: A solution to global issues. Biotechnol. Biofuels 2021, 14, 1–15.
- 9.
Chen, W.-H.; Lin, Y.-Y.; Liu, H.-C.; et al. A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application. Appl. Energy 2019, 237, 283–291.
https://doi.org/10.1016/j.apenergy.2018.12.084.
- 10.
Mahmudul, H.; Akbar, D.; Rasul, M.; et al. Estimation of the sustainable production of gaseous biofuels, generation of electricity, and reduction of greenhouse gas emissions using food waste in anaerobic digesters. Fuel 2022, 310, 122346.
- 11.
Meng, Y.; Li, Y.; Han, R.; et al. Optimization of the process conditions for methane yield from co-digestion of mixed vegetable residues and pig manure using response surface methodology. Waste Biomass Valorization 2024, 15, 4117–4130.
- 12.
El Salamony, D.H.; Hassouna, M.S.E.; Zaghloul, T.I.; et al. Bioenergy production from chicken feather waste by anaerobic digestion and bioelectrochemical systems. Microb. Cell Factories 2024, 23, 102.
- 13.
Jiang, S.; Yu, D.; Xiong, F.; et al. Enhanced methane production from the anaerobic co-digestion of food waste plus fruit and vegetable waste. Environ. Sci. Pollut. Res. 2023, 30, 70592–70603.
- 14.
Xue, S.; Wang, Y.; Lyu, X.; et al. Interactive effects of carbohydrate, lipid, protein composition and carbon/nitrogen ratio on biogas production of different food wastes. Bioresour. Technol. 2020, 312, 123566.
- 15.
Svensson, K.; Kjørlaug, O.; Higgins, M.J.; et al. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: Effect on methane yields, dewaterability and solids reduction. Water Res. 2018, 132, 158–166.
- 16.
Adewuyi, A. Underutilized lignocellulosic waste as sources of feedstock for biofuel production in developing countries. Front. Energy Res. 2022, 10, 741570.
- 17.
Hafid, H.S.; Omar, F.N.; Abdul Rahman, N.A.; et al. Innovative conversion of food waste into biofuel in integrated waste management system. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3453–3492.
- 18.
Cereda, M.P. Starch hydrolysis: Physical, acid, and enzymatic processes. In Starch Industries: Processes and Innovative Products in Food and Non-Food Uses; Elsevier: Amsterdam, The Netherlands, 2024; pp. 75–113.
- 19.
Jeevahan, J.; Anderson, A.; Sriram, V.; et al. Waste into energy conversion technologies and conversion of food wastes into the potential products: A review. Int. J. Ambient Energy 2021, 42, 1083–1101.
- 20.
Eyberg, V.; Dieterich, V.; Bastek, S.; et al. Techno-economic assessment and comparison of Fischer–Tropsch and Methanol-to-Jet processes to produce sustainable aviation fuel via Power-to-Liquid. Energy Convers. Manage. 2024, 315, 118728.
- 21.
Mailaram, S.; Kumar, P.; Kunamalla, A.; et al. Biomass, biorefinery, and biofuels. In Sustainable Fuel Technologies Handbook; Elsevier: Amsterdam, The Netherlands, 2021; pp. 51–87.
- 22.
Kopli, F.Z.; Artha, F.K.; Ismeini, I.; et al. Synthesizing and Performance Testing of Zn Promoted Ni Catalyst With γ-Al2O3 Support in The Process of Hydrotreating Used Cooking Oil into Green Diesel. J. Ris. Teknol. Pencegah. Pencemaran Ind. 2024, 15, 41–49.
- 23.
Ferreira-Pinto, L.; Parizi, M.P.S.; de Araújo, P.C.C.; et al. Experimental basic factors in the production of H2 via supercritical water gasification. Int. J. Hydrog. Energy 2019, 44, 25365–25383.
- 24.
Molino, A.; De Gisi, S.; Petta, L.; et al. Experimental and theoretical investigation on the recovery of green chemicals and energy from mixed agricultural wastes by coupling anaerobic digestion and supercritical water gasification. Chem. Eng. J. 2019, 370, 1101–1110.
- 25.
Adar, E.; Ince, M.; Bilgili, M.S. Characteristics of liquid products in supercritical water gasification of municipal sewage sludge by continuous flow tubular reactor. Waste Biomass Valorization 2020, 11, 6321–6335.
- 26.
Ramos, A.; Monteiro, E.; Rouboa, A. Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods–a review. Energy Convers. Manag. 2022, 270, 116271.
- 27.
Nahak, B.; Preetam, S.; Sharma, D.; et al. Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production. Renew. Sustain. Energy Rev. 2022, 161, 112393.
https://doi.org/10.1016/j.rser.2022.112393.
- 28.
Ramandani, A.A.; Lee, S.Y.; Jambrak, A.R.; et al. Synergizing food waste management and microalgae biorefinery for bioenergy production: Recent advance on direct and indirect conversion pathway. Process Biochem. 2025, 151, 14–26.
https://doi.org/10.1016/j.procbio.2025.01.006.
- 29.
- 30.
Saengsuriwong, R.; Onsree, T.; Phromphithak, S.; et al. Biocrude oil production via hydrothermal liquefaction of food waste in a simplified high-throughput reactor. Bioresour. Technol. 2021, 341, 125750.
- 31.
Li, J.; Zhang, L.; Li, C.; et al. Data-driven based in-depth interpretation and inverse design of anaerobic digestion for CH4-rich biogas production. ACS EST Eng. 2022, 2, 642–652.
- 32.
Li, J.; Zhu, X.; Li, Y.; et al. Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: Application of machine learning on waste-to-resource. J. Clean. Prod. 2021, 278, 123928.
- 33.
Bayat, H.; Dehghanizadeh, M.; Jarvis, J.M.; et al. Hydrothermal liquefaction of food waste: Effect of process parameters on product yields and chemistry. Front. Sustain. Food Syst. 2021, 5, 658592.
- 34.
Li, J.; Zhang, W.; Liu, T.; et al. Machine learning aided bio-oil production with high energy recovery and low nitrogen content from hydrothermal liquefaction of biomass with experiment verification. Chem. Eng. J. 2021, 425, 130649.
- 35.
Posmanik, R.; Martinez, C.M.; Cantero-Tubilla, B.; et al. Acid and alkali catalyzed hydrothermal liquefaction of dairy manure digestate and food waste. ACS Sustain. Chem. Eng. 2018, 6, 2724–2732.
- 36.
Yan, M.; Liu, J.; Yoshikawa, K.; et al. Cascading disposal for food waste by integration of hydrothermal carbonization and supercritical water gasification. Renew. Energy 2022, 186, 914–926.
- 37.
Li, J.; Pan, L.; Suvarna, M.; et al. Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening. Chem. Eng. J. 2021, 426, 131285.
https://doi.org/10.1016/j.cej.2021.131285.
- 38.
Li, J.; Li, L.; Suvarna, M.; et al. Wet wastes to bioenergy and biochar: A critical review with future perspectives. Sci. Total Environ. 2022, 817, 152921.
- 39.
Li, J.; Suvarna, M.; Li, L.; et al. A review of computational modeling techniques for wet waste valorization: Research trends and future perspectives. J. Clean. Prod. 2022, 367, 133025.
- 40.
Kumabe, K.; Itoh, N.; Matsumoto, K.; et al. Hydrothermal gasification of glucose and starch in a batch and continuous reactor. Energy Rep. 2017, 3, 70–75.
- 41.
Li, J.; Suvarna, M.; Pan, L.; et al. A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification. Appl. Energy 2021, 304, 117674.
- 42.
Rajagopal, J.; Gopinath, K.P.; Neha, R.; et al. Processing of household waste via hydrothermal gasification and hydrothermal liquefaction for bio-oil and bio-hydrogen production: Comparison with RSM studies. J. Environ. Chem. Eng. 2022, 10, 107218.
- 43.
Cao, W.; Wei, Y.; Jin, H.; et al. Characteristic of food waste gasification in supercritical water for hydrogen production. Biomass Bioenergy 2022, 163, 106508.
- 44.
Yang, Z.; Liu, Y.; Zhang, J.; et al. Improvement of biofuel recovery from food waste by integration of anaerobic digestion, digestate pyrolysis and syngas biomethanation under mesophilic and thermophilic conditions. J. Clean. Prod. 2020, 256, 120594.
- 45.
Shi, L.; Leng, C.; Zhou, Y.; et al. A review of electrooxidation systems treatment of poly-fluoroalkyl substances (PFAS): Electrooxidation degradation mechanisms and electrode materials. Environ. Sci. Pollut. Res. 2024, 31, 42593–42613..
- 46.
Jiang, Y.; Chen, F.; Xia, C. A review on cathode processes and materials for electro-reduction of carbon dioxide in solid oxide electrolysis cells. J. Power Sources 2021, 493, 229713.
- 47.
Thanarasu, A.; Periyasamy, K.; Subramanian, S. An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. Chemosphere 2022, 287, 131886.
- 48.
Park, J.-G.; Lee, B.; Kwon, H.-J.; et al. Contribution analysis of methane production from food waste in bulk solution and on bio-electrode in a bio-electrochemical anaerobic digestion reactor. Sci. Total Environ. 2019, 670, 741–751.
- 49.
Ding, L.; Wang, Y.; Lin, H.; et al. Facilitating solid-state anaerobic digestion of food waste via bio-electrochemical treatment. Renew. Sustain. Energy Rev. 2022, 166, 112637.
- 50.
Hoang, A.T.; Nižetić, S.; Ng, K.H.; et al. Microbial fuel cells for bioelectricity production from waste as sustainable prospect of future energy sector. Chemosphere 2022, 287, 132285.
- 51.
Xin, X.; Ma, Y.; Liu, Y. Electric energy production from food waste: Microbial fuel cells versus anaerobic digestion. Bioresour. Technol. 2018, 255, 281–287.
- 52.
Wu, R.; Chen, D.; Cao, S.; et al. Enhanced ethanol production from sugarcane molasses by industrially engineered Saccharomyces cerevisiae via replacement of the PHO4 gene. RSC Adv. 2020, 10, 2267–2276.
- 53.
Semkiv, M.V.; Dmytruk, K.V.; Abbas, C.A.; et al. Activation of futile cycles as an approach to increase ethanol yield during glucose fermentation in Saccharomyces cerevisiae. Bioengineered 2016, 7, 106–111.
- 54.
Fei, X.; Chen, T.; Jia, W.; et al. Enhancement effect of ionizing radiation pretreatment on biogas production from anaerobic fermentation of food waste. Radiat. Phys. Chem. 2020, 168, 108534–108534.
https://doi.org/10.1016/j.radphyschem.2019.108534.
- 55.
- 56.
Oyedeji, O.; Gitman, P.; Qu, J.; et al. Understanding the Impact of Lignocellulosic Biomass Variability on the Size Reduction Process: A Review. ACS Sustain. Chem. Eng. 2020, 8, 2327–2343.
https://doi.org/10.1021/acssuschemeng.9b06698.
- 57.
Gu, Y.M.; Park, S.Y.; Park, J.Y.; et al. Impact of attrition ball-mill on characteristics and biochemical methane potential of food waste. Energies 2021, 14, 2085.
https://doi.org/10.3390/en14082085.
- 58.
Zhang, C.; Kang, X.; Wang, F.; Tian, Y.; Liu, T.; Su, Y.; Qian, T.; Zhang, Y. Valorization of food waste for cost-effective reducing sugar recovery in a two-stage enzymatic hydrolysis platform. Energy 2020, 208, 118379–118379.
https://doi.org/10.1016/j.energy.2020.118379.
- 59.
Tumuluru, J.S.; Tabil, L.G.; Song, Y.; Iroba, K.L.; Meda, V. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes. Bioenergy Res. 2015, 8, 388–401.
https://doi.org/10.1007/s12155-014-9527-4.
- 60.
Khankelov, T.; Maksudov, Z.; Mukhamedova, N.; Tursunov, S. Crushing and screening complex for the production of compost from organic components of municipal solid waste. E3S Web Conf. 2021, 264, 01026.
https://doi.org/10.1051/e3sconf/202126401026.
- 61.
Huang, Q. Microbial Electrolysis Cell-Assisted Anaerobic Digestion for Enhancing Biomethane Recovery from High-Strength Wastewater; Spring: Berlin/Heidelberg, Germany, 2024.
- 62.
Moreroa, M.; Malematja, T.P.; Ijoma, G.N. Integrating the circular economy model into the management and treatment of Fischer–Tropsch effluents—A conversion of waste to energy (biogas) opportunity. IET Renew. Power Gener. 2024, 18, 4153–4165.