- 1.
Ge, M.; Li, Z.; Wang, Y.; et al. Experimental study on thermoelectric power generation based on cryogenic liquid cold energy. Energy 2021, 220, 119746. https://doi.org/10.1016/j.energy.2020.119746.
- 2.
Luo, D.; Yu, Y.; Yan, Y.; et al. Increasing power densities in a thermoelectric generator by stacking and incorporating dual heat pipes. Device 2024, 2, 100435. https://doi.org/10.1016/j.device.2024.100435.
- 3.
Luo, D.; Liu, Z.; Cao, J.; et al. Feasibility and parametric study of a groove-type thermoelectric generator under multiphysics field conditions. Appl. Therm. Eng. 2025, 259, 124972. https://doi.org/10.1016/j.applthermaleng.2024.124972.
- 4.
Luo, D.; Wu, Z.; Zhang, Z.; et al. Transient thermal analysis of a thermoelectric-based battery thermal management system at high temperatures. Energy 2025, 318, 134833. https://doi.org/10.1016/j.energy.2025.134833.
- 5.
He, T.; Nair, S.K.; Babu, P.; et al. A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy. Appl. Energy 2018, 222, 13–24. https://doi.org/10.1016/j.apenergy.2018.04.006.
- 6.
Shih, W.-C.; Matsuda, M.; Konno, K.; et al. Tailored thermoelectric performance of poly(phenylene butadiynylene)s/carbon nanotubes nanocomposites towards wearable thermoelectric generator application. Compos. Part B Eng. 2024, 286, 111779. https://doi.org/10.1016/j.compositesb.2024.111779.
- 7.
Bennett, G. Space Nuclear Power: Opening the Final Frontier. In Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), San Diego, CA, USA, 26–29 June 2006.
- 8.
Kraemer, D.; Jie, Q.; McEnaney, K.; et al. Concentrating solar thermoelectric generators with a peak efficiency of 7.4%. Nat. Energy 2016, 1, 16153. https://doi.org/10.1038/nenergy.2016.153.
- 9.
Zhao, R.; Zhu, N.; Zhao, X.; et al. Multi-objective optimization of a novel photovoltaic-thermoelectric generator system based on hybrid enhanced algorithm. Energy 2025, 319, 135046. https://doi.org/10.1016/j.energy.2025.135046.
- 10.
Suresh Prasanna, C.; Harish, S.; Archana, J.; et al. Interfacial energy barrier tuning in MnO2/MoS2/Carbon fabric integrated with low resistance textrode for highly efficient wearable thermoelectric generator. Carbon 2024, 218, 118609. https://doi.org/10.1016/j.carbon.2023.118609.
- 11.
Luo, D.; Li, Z.; Yang, S.; et al. Improved performance of the thermoelectric generator by combining vapor chambers and circular fins. Energy 2025, 320, 135354. https://doi.org/10.1016/j.energy.2025.135354.
- 12.
Luo, D.; Yang, S.; Li, Z.; et al. Transient energy, exergy, and economic analysis of an automotive thermoelectric generator with different structures. Appl. Energy 2025, 377, 124494. https://doi.org/10.1016/j.apenergy.2024.124494.
- 13.
Luo, D.; Yang, S.; Zhang, H.; et al. Performance improvement of an automotive thermoelectric generator by introducing a novel split fin structure. Appl. Energy 2025, 382, 125218. https://doi.org/10.1016/j.apenergy.2024.125218.
- 14.
Yang, S.; Chen, H.; Yang, X.; et al. Design optimization of split fins in heat pipe-based thermoelectric generators. Energy 2025, 322, 135547. https://doi.org/10.1016/j.energy.2025.135547.
- 15.
Luo, Q.; Li, P.; Cai, L.; et al. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns. J. Electron. Mater. 2015, 44, 1750–1762. https://doi.org/10.1007/s11664-014-3543-1.
- 16.
Nour Eddine, A.; Chalet, D.; Faure, X.; et al. Optimization and characterization of a thermoelectric generator prototype for marine engine application. Energy 2018, 143, 682–695. https://doi.org/10.1016/j.energy.2017.11.018.
- 17.
Miao, Z.; Meng, X.; Li, X. Design a high-performance thermoelectric generator by analyzing industrial heat transfer. Appl. Energy 2023, 347, 121403. https://doi.org/10.1016/j.apenergy.2023.121403.
- 18.
Liu, X.; Wang, K.; Shen, Z. A novel strategy of inserting radiation shields to enhance the performance of thermoelectric generator systems for industrial high-temperature heat recovery. Energy 2024, 301, 131704. https://doi.org/10.1016/j.energy.2024.131704.
- 19.
Luo, D.; Wang, R.C. Experimental Test and Estimation of the Equivalent Thermoelectric Properties for a Thermoelectric Module. J. Energy Resour. Technol.-Trans. Asme 2021, 143, 122102. https://doi.org/10.1115/1.4050132.
- 20.
Luo, D.; Chen, H.; Chen, W.-H.; et al. Interdependent optimization strategies for material, module, and system designs in thermoelectric devices. Device 2025, 100752. https://doi.org/10.1016/j.device.2025.100752.
- 21.
Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457. https://doi.org/10.1126/science.1158899.
- 22.
Twaha, S.; Zhu, J.; Yan, Y.; et al. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renew. Sustain. Energy Rev. 2016, 65, 698–726. https://doi.org/10.1016/j.rser.2016.07.034.
- 23.
Zheng, X.F.; Liu, C.X.; Yan, Y.Y.; et al. A review of thermoelectrics research—Recent developments and potentials for sustainable and renewable energy applications. Renew. Sustain. Energy Rev. 2014, 32, 486–503. https://doi.org/10.1016/j.rser.2013.12.053.
- 24.
Luo, D.; Wang, R.; Yu, W.; et al. Parametric study of a thermoelectric module used for both power generation and cooling. Renew. Energy 2020, 154, 542–552. https://doi.org/10.1016/j.renene.2020.03.045.
- 25.
Wu, Y.; Ma, W.; Guo, Z.-Y. Governing equations of thermoelectric generators. Int. J. Heat Mass Transf. 2025, 241, 126737. https://doi.org/10.1016/j.ijheatmasstransfer.2025.126737.
- 26.
Luo, D.; Wang, R.; Yu, W. Comparison and parametric study of two theoretical modeling approaches based on an air-to-water thermoelectric generator system. J. Power Sources 2019, 439, 227069. https://doi.org/10.1016/j.jpowsour.2019.227069.
- 27.
Siddique, A.R.M.; Mahmud, S.; Heyst, B.V. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew. Sustain. Energy Rev. 2017, 73, 730–744. https://doi.org/10.1016/j.rser.2017.01.177.
- 28.
Ma, Y.; Hao, Q.; Poudel, B.; et al. Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks. Nano Lett. 2008, 8, 2580–2584. https://doi.org/10.1021/nl8009928.
- 29.
Ohta, M.; Biswas, K.; Lo, S.-H.; et al. Enhancement of Thermoelectric Figure of Merit by the Insertion of MgTe Nanostructures in p-type PbTe Doped with Na2Te. Adv. Energy Mater. 2012, 2, 1117–1123. https://doi.org/10.1002/aenm.201100756.
- 30.
Joshi, G.; Lee, H.; Lan, Y.; et al. Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys. Nano Lett. 2008, 8, 4670–4674. https://doi.org/10.1021/nl8026795.
- 31.
Kim, S.I.; Lee, K.H.; Mun, H.A.; et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109–114. https://doi.org/10.1126/science.aaa4166.
- 32.
Wang, Y.; Liu, W.-D.; Shi, X.-L.; et al. Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction. Chem. Eng. J. 2020, 391, 123513. https://doi.org/10.1016/j.cej.2019.123513.
- 33.
Meroz, O.; Elkabets, N.; Gelbstein, Y. Enhanced Thermoelectric Properties of n-Type Bi2Te3–xSex Alloys following Melt-Spinning. ACS Appl. Energy Mater. 2020, 3, 2090–2095. https://doi.org/10.1021/acsaem.9b02133.
- 34.
Zheng, Y.; Liu, C.; Miao, L.; et al. Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity. Nano Energy 2019, 59, 311–320. https://doi.org/10.1016/j.nanoen.2019.02.045.
- 35.
Wu, Y.; Chen, Z.; Nan, P.; et al. Lattice Strain Advances Thermoelectrics. Joule 2019, 3, 1276–1288. https://doi.org/10.1016/j.joule.2019.02.008.
- 36.
Rogl, G.; Grytsiv, A.; Rogl, P.; et al. n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0. Acta Mater. 2014, 63, 30–43. https://doi.org/10.1016/j.actamat.2013.09.039.
- 37.
Tsai, Y.-F.; Wei, P.-C.; Chang, L.; et al. Compositional Fluctuations Locked by Athermal Transformation Yielding High Thermoelectric Performance in GeTe. Adv. Mater. 2021, 33, 2005612. https://doi.org/10.1002/adma.202005612.
- 38.
Saiga, Y.; Du, B.; Deng, S.K.; et al. Thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 doped with Cu. J. Alloys Compd. 2012, 537, 303–307. https://doi.org/10.1016/j.jallcom.2012.05.049.
- 39.
Shi, X.; Zhao, T.; Zhang, X.; et al. Extraordinary n-Type Mg3SbBi Thermoelectrics Enabled by Yttrium Doping. Adv. Mater. 2019, 31, 1903387. https://doi.org/10.1002/adma.201903387.
- 40.
Luo, D.; Liu, Z.; Cao, J.; et al. Performance investigation and optimization of an L-type thermoelectric generator. Energy 2024, 307, 132768. https://doi.org/10.1016/j.energy.2024.132768.
- 41.
Wang, R.; Meng, Z.; Luo, D.; et al. A Comprehensive Study on X-Type Thermoelectric Generator Modules. J. Electron. Mater. 2020, 49, 4343–4354. https://doi.org/10.1007/s11664-020-08152-4.
- 42.
Luo, D.; Zhang, H.; Cao, J.; et al. Innovative design of an annular thermoelectric generator for enhanced automotive waste heat recovery. Energy Convers. Manag. 2024, 313, 118584. https://doi.org/10.1016/j.enconman.2024.118584.
- 43.
de Oca, O.Y.E.-M.; Olivares-Robles, M.A. Dynamic performance optimization of two-stage thermoelectric generator: Impact of different geometric leg shapes in each stage. Energy Rep. 2024, 11, 597–610. https://doi.org/10.1016/j.egyr.2023.12.032.
- 44.
Bian, M.; Xu, Z.; Tang, X.; et al. Tri-objective and multi-parameter geometric optimization of two-stage radioisotope thermoelectric generator based on NSGA-II. Appl. Therm. Eng. 2025, 258, 124685. https://doi.org/10.1016/j.applthermaleng.2024.124685.
- 45.
Zhang, Q.; Liao, J.; Tang, Y.; et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci. 2017, 10, 956–963. https://doi.org/10.1039/C7EE00447H.
- 46.
He, H.; Xie, Y.; Zuo, Q.; et al. Optimization analysis for thermoelectric performance improvement of biconical segmented annular thermoelectric generator. Energy 2024, 306, 132397. https://doi.org/10.1016/j.energy.2024.132397.
- 47.
Sun, Y.; Zhai, P.; Wang, S.; et al. Performance enhancement of segmented annular thermoelectric generator based on multi-parameter and multi-objective optimization. Therm. Sci. Eng. Prog. 2024, 47, 102245. https://doi.org/10.1016/j.tsep.2023.102245.
- 48.
Nozariasbmarz, A.; Suarez, F.; Dycus, J.H.; et al. Thermoelectric generators for wearable body heat harvesting: Material and device concurrent optimization. Nano Energy 2020, 67, 104265. https://doi.org/10.1016/j.nanoen.2019.104265.
- 49.
Hyland, M.; Hunter, H.; Liu, J.; et al. Wearable thermoelectric generators for human body heat harvesting. Appl. Energy 2016, 182, 518–524. https://doi.org/10.1016/j.apenergy.2016.08.150.
- 50.
Van Toan, N.; Thi Kim Tuoi, T.; Van Hieu, N.; et al. Thermoelectric generator with a high integration density for portable and wearable self-powered electronic devices. Energy Convers. Manag. 2021, 245, 114571. https://doi.org/10.1016/j.enconman.2021.114571.
- 51.
Van Bavel, M.; Leonov, V.; Yazicioglu, R.F.; et al. Wearable battery-free wireless 2-channel EEG systems powerd by energy scavengers. Sens. Transducers J. 2008, 94.
- 52.
Lv, H.; Liang, L.; Zhang, Y.; et al. A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 2021, 88, 106260. https://doi.org/10.1016/j.nanoen.2021.106260.
- 53.
Kim, C.S.; Yang, H.M.; Lee, J.; et al. Self-Powered Wearable Electrocardiography Using a Wearable Thermoelectric Power Generator. ACS Energy Lett. 2018, 3, 501–507. https://doi.org/10.1021/acsenergylett.7b01237.
- 54.
Beltrán-Pitarch, B.; García-Cañadas, J. A novel vacuum pressure sensor using a thermoelectric device. Vacuum 2020, 172, 109088. https://doi.org/10.1016/j.vacuum.2019.109088.
- 55.
Kim, Y.J.; Gu, H.M.; Kim, C.S.; et al. High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator. Energy 2018, 162, 526–533. https://doi.org/10.1016/j.energy.2018.08.064.
- 56.
Guan, M.; Wang, K.; Xu, D.; et al. Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes. Energy Convers. Manag. 2017, 138, 30–37. https://doi.org/10.1016/j.enconman.2017.01.049.
- 57.
Champier, D. Thermoelectric generators: A review of applications. Energy Convers. Manag. 2017, 140, 167–181. https://doi.org/10.1016/j.enconman.2017.02.070.
- 58.
Shittu, S.; Li, G.; Xuan, Q.; et al. Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux. Energy 2020, 199, 117433. https://doi.org/10.1016/j.energy.2020.117433.
- 59.
Cotfas, D.T.; Enesca, A.; Cotfas, P.A. Enhancing the performance of the solar thermoelectric generator in unconcentrated and concentrated light. Renew. Energy 2024, 221, 119831. https://doi.org/10.1016/j.renene.2023.119831.
- 60.
Cao, Z.; Li, W. A day-night solar thermoelectric generator enabled by phase change material and forced water cooling. Sol. Energy 2024, 268, 112315. https://doi.org/10.1016/j.solener.2024.112315.
- 61.
Luo, D.; Wang, R.; Yu, W.; et al. Modelling and simulation study of a converging thermoelectric generator for engine waste heat recovery. Appl. Therm. Eng. 2019, 153, 837–847. https://doi.org/10.1016/j.applthermaleng.2019.03.060.
- 62.
Yang, W.; Jin, C.; Zhu, W.; et al. Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery. Renew. Energy 2024, 220, 119628. https://doi.org/10.1016/j.renene.2023.119628.
- 63.
Luo, D.; Li, Z.; Yan, Y.; et al. Design and optimization of a thermoelectric generator with dimple fins to achieve higher net power. Appl. Therm. Eng. 2024, 252, 123735. https://doi.org/10.1016/j.applthermaleng.2024.123735.
- 64.
Ge, M.; Zhao, C.; Xiao, Y.; et al. Experimental study on enhancing thermoelectric performance of exhaust thermoelectric generator using multi-orifice plate. J. Clean. Prod. 2025, 486, 144446. https://doi.org/10.1016/j.jclepro.2024.144446.
- 65.
Luo, D.; Yang, S.; Yan, Y.; et al. Performance improvement of the automotive thermoelectric generator by extending the hot side area of the heat exchanger through heat pipes. Energy Convers. Manag. 2024, 310, 118472. https://doi.org/10.1016/j.enconman.2024.118472.
- 66.
Pacheco, N.; Brito, F.P.; Vieira, R.; et al. Compact automotive thermoelectric generator with embedded heat pipes for thermal control. Energy 2020, 197, 117154. https://doi.org/10.1016/j.energy.2020.117154.
- 67.
Liu, X.; Deng, Y.D.; Li, Z.; et al. Performance analysis of a waste heat recovery thermoelectric generation system for automotive application. Energy Convers. Manag. 2015, 90, 121–127. https://doi.org/10.1016/j.enconman.2014.11.015.
- 68.
Zhang, Y.; Cleary, M.; Wang, X.; et al. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery. Energy Convers. Manag. 2015, 105, 946–950. https://doi.org/10.1016/j.enconman.2015.08.051.
- 69.
Georgopoulou, C.A.; Dimopoulos, G.G.; Kakalis, N.M.P. A modular dynamic mathematical model of thermoelectric elements for marine applications. Energy 2016, 94, 13–28. https://doi.org/10.1016/j.energy.2015.10.130.
- 70.
Kuroki, T.; Kabeya, K.; Makino, K.; et al. Thermoelectric Generation Using Waste Heat in Steel Works. J. Electron. Mater. 2014, 43, 2405–2410. https://doi.org/10.1007/s11664-014-3094-5.