- 1.
Van der Schyff, V.; Kalina, J.; Abballe, A.; et al. Has Regulatory Action Reduced Human Exposure to Flame Retardants? Environ. Sci. Technol. 2023, 57, 19106–19124.
- 2.
Feiteiro, J.; Rocha, S.M.; Mariana, M.; et al. Pathways involved in the human vascular Tetrabromobisphenol A response: Calcium and potassium channels and nitric oxide donors. Toxicology 2022, 470, 153158.
- 3.
Xu, P.; Tao, B.; Zhou, Z.; et al. Occurrence, composition, source, and regional distribution of halogenated flame retardants and polybrominated dibenzo-p-dioxin/dibenzofuran in the soils of Guiyu, China. Environ. Pollut. 2017, 228, 61–71.
- 4.
Hendriks, H.S.; Westerink, R.H. Neurotoxicity and risk assessment of brominated and alternative flame retardants. Neurotoxicol. Teratol. 2015, 52, 248–269.
- 5.
Alaee, M.; Arias, P.; Sjödin, A.; et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 2003, 29, 683–689.
- 6.
Sharkey, M.; Harrad, S.; Abdallah, M.A.-E.; et al. Phasing-out of legacy brominated flame retardants: The UNEP Stockholm Convention and other legislative action worldwide. Environ. Int. 2020, 144, 106041.
- 7.
Yao, C.; Yang, H.; Li, Y. A review on organophosphate flame retardants in the environment: Occurrence, accumulation, metabolism and toxicity. Sci. Total Environ. 2021, 795, 148837.
- 8.
Van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153.
- 9.
Li, Q.; Guo, M.; Song, H.; et al. Size distribution and inhalation exposure of airborne particle-bound polybrominated diphenyl ethers, new brominated flame retardants, organophosphate esters, and chlorinated paraffins at urban open consumption place. Sci. Total Environ. 2021, 794, 148695.
- 10.
Levchik, S.; Weil, E. Developments in phosphorus flame retardants. In Advances in Fire Retardant Materials; Elsevier: Amsterdam, The Netherlands, 2008; pp. 41–66.
- 11.
Kung, H.-C.; Hsieh, Y.-K.; Huang, B.-W.; et al. An overview: Organophosphate flame retardants in the atmosphere. Aerosol Air Qual. Res. 2022, 22, 220148.
- 12.
Miranda, R.G.; Sampaio, C.F.; Leite, F.G.; et al. Flame Retardants: New and Old Environmental Contaminants. In The Toxicity of Environmental Pollutants; IntechOpen: London, UK, 2022.
- 13.
Kajiwara, N.; Desborough, J.; Harrad, S.; et al. Photolysis of brominated flame retardants in textiles exposed to natural sunlight. Environ. Sci. Process. Impacts 2013, 15, 653–660.
- 14.
Chokwe, T.B.; Abafe, O.A.; Mbelu, S.P.; et al. A review of sources, fate, levels, toxicity, exposure and transformations of organophosphorus flame-retardants and plasticizers in the environment. Emerg. Contam. 2020, 6, 345–366.
- 15.
Bergman, Å.; Rydén, A.; Law, R.J.; et al. A novel abbreviation standard for organobromine, organochlorine and organophosphorus flame retardants and some characteristics of the chemicals. Environ. Int. 2012, 49, 57–82.
- 16.
Mack, A.G. Flame retardants, halogenated. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: Hoboken, NJ, USA, 2000.
- 17.
Abbasi, G.; Li, L.; Breivik, K. Global historical stocks and emissions of PBDEs. Environ. Sci. Technol. 2019, 53, 6330–6340.
- 18.
McGrath, T.J.; Morrison, P.D.; Ball, A.S.; et al. Detection of novel brominated flame retardants (NBFRs) in the urban soils of Melbourne, Australia. Emerg. Contam. 2017, 3, 23–31.
- 19.
Al-Omran, L.S. Physiochemical properties and environmental levels of legacy and novel brominated flame retardants. In Flame Retardants; IntechOpen: London, UK, 2018.
- 20.
Gao, Y.; Cao, R.; Zhang, H.; et al. Analysis of emerging halogenated flame retardants in environment. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 41–70.
- 21.
van Mourik, L.M.; Gaus, C.; Leonards, P.E.; et al. Chlorinated paraffins in the environment: A review on their production, fate, levels and trends between 2010 and 2015. Chemosphere 2016, 155, 415–428.
- 22.
Horacek, H.; Grabner, R. Advantages of flame retardants based on nitrogen compounds. Polym. Degrad. Stab. 1996, 54, 205–215.
- 23.
Morgan, A.B. Non-Halogenated Flame Retardant Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2021.
- 24.
Lu, S.-Y.; Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 2002, 27, 1661–1712.
- 25.
Levchik, S.V.; Weil, E.D. Combustion and Fire Retardancy of Aliphatic Nylons; Wiley: Hoboken, NJ, USA, 2000.
- 26.
Geschwindner, C.; Goedderz, D.; Li, T.; et al. The effects of various flame retardants on the combustion of polypropylene: Combining optical diagnostics and pyrolysis fragment analysis. Polym. Degrad. Stab. 2023, 211, 110321.
- 27.
Zhang, M.; Buekens, A.; Li, X. Brominated flame retardants and the formation of dioxins and furans in fires and combustion. J. Hazard. Mater. 2016, 304, 26–39.
- 28.
Altarawneh, M.; Saeed, A.; Al-Harahsheh, M.; et al. Thermal decomposition of brominated flame retardants (BFRs): Products and mechanisms. Prog. Energy Combust. Sci. 2019, 70, 212–259.
- 29.
Huo, S.; Song, P.; Yu, B.; et al. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog. Polym. Sci. 2021, 114, 101366.
- 30.
Yang, S.; Zhang, Q.; Hu, Y. Synthesis of a novel flame retardant containing phosphorus, nitrogen and boron and its application in flame-retardant epoxy resin. Polym. Degrad. Stab. 2016, 133, 358–366.
- 31.
Kundu, C.K.; Li, Z.; Song, L.; et al. An overview of fire retardant treatments for synthetic textiles: From traditional approaches to recent applications. Eur. Polym. J. 2020, 137, 109911.
- 32.
Samani, P.; van der Meer, Y. Life cycle assessment (LCA) studies on flame retardants: A systematic review. J. Clean. Prod. 2020, 274, 123259.
- 33.
Lu, S.; Chen, S.; Luo, L.; et al. Molecules Featuring the Azaheterocycle Moiety toward the Application of Flame-Retardant Polymers. ACS Chem. Health Saf. 2023, 30, 343–361.
- 34.
Liu, J.; Zhang, X.; Liu, S.; et al. Char structure and charring mechanism of phosphazene-based epoxy resin during combustion. Polym. Degrad. Stab. 2022, 200, 109927.
- 35.
Wang, Q.; Shi, W. Kinetics study of thermal decomposition of epoxy resins containing flame retardant components. Polym. Degrad. Stab. 2006, 91, 1747–1754.
- 36.
Vojta, S.; Melymuk, L.; Klánová, J. Changes in flame retardant and legacy contaminant concentrations in indoor air during building construction, furnishing, and use. Environ. Sci. Technol. 2017, 51, 11891–11899.
- 37.
Vojta, Š.; Bečanová, J.; Melymuk, L.; et al. Screening for halogenated flame retardants in European consumer products, building materials and wastes. Chemosphere 2017, 168, 457–466.
- 38.
Kajiwara, N.; Noma, Y.; Takigami, H. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008. J. Hazard. Mater. 2011, 192, 1250–1259.
- 39.
Rauert, C.; Lazarov, B.; Harrad, S.; et al. A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants. Atmos. Environ. 2014, 82, 44–55.
- 40.
Ni, Y.; Kumagai, K.; Yanagisawa, Y. Measuring emissions of organophosphate flame retardants using a passive flux sampler. Atmos. Environ. 2007, 41, 3235–3240.
- 41.
Kemmlein, S.; Hahn, O.; Jann, O. Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials. Atmos. Environ. 2003, 37, 5485–5493.
- 42.
Carlsson, H.; Nilsson, U.; Östman, C. Video display units: An emission source of the contact allergenic flame retardant triphenyl phosphate in the indoor environment. Environ. Sci. Technol. 2000, 34, 3885–3889.
- 43.
Takigami, H.; Suzuki, G.; Hirai, Y.; et al. Flame retardants in indoor dust and air of a hotel in Japan. Environ. Int. 2009, 35, 688–693.
- 44.
Zhu, H.; Kannan, K. Melamine and cyanuric acid in foodstuffs from the United States and their implications for human exposure. Environ. Int. 2019, 130, 104950.
- 45.
Zhu, H.; Kannan, K. Distribution profiles of melamine and its derivatives in indoor dust from 12 countries and the implications for human exposure. Environ. Sci. Technol. 2018, 52, 12801–12808.
- 46.
Antoš, K.; Sedlář, J. Influence of brominated flame retardant thermal decomposition products on HALS. Polym. Degrad. Stab. 2005, 90, 188–194.
- 47.
Luda, M.; Balabanovich, A.; Hornung, A.; et al. Thermal degradation of a brominated bisphenol a derivative. Polym. Adv. Technol. 2003, 14, 741–748.
- 48.
Wang, P.; Zhang, Q.; Zhang, H.; et al. Sources and environmental behaviors of Dechlorane Plus and related compounds—A review. Environ. Int. 2016, 88, 206–220.
- 49.
Nguyen, C.; Kim, J. Thermal stabilities and flame retardancies of nitrogen–phosphorus flame retardants based on bisphosphoramidates. Polym. Degrad. Stab. 2008, 93, 1037–1043.
- 50.
Chen, X.; Hu, Y.; Jiao, C.; et al. Preparation and thermal properties of a novel flame-retardant coating. Polym. Degrad. Stab. 2007, 92, 1141–1150.
- 51.
Camino, G.; Costa, L.; Di Cortemiglia, M.L. Overview of fire retardant mechanisms. Polym. Degrad. Stab. 1991, 33, 131–154.
- 52.
Thirumal, M.; Khastgir, D.; Nando, G.; et al. Halogen-free flame retardant PUF: Effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym. Degrad. Stab. 2010, 95, 1138–1145.
- 53.
Balabanovich, A.; Hornung, A.; Merz, D.; et al. The effect of a curing agent on the thermal degradation of fire retardant brominated epoxy resins. Polym. Degrad. Stab. 2004, 85, 713–723.
- 54.
Wang, X.; He, S.; Wang, G.; et al. Characterization of PBDD/F emissions from simulated polystyrene insulation foam via lab-scale programmed thermal treatment testing. Chemosphere 2018, 211, 926–933.
- 55.
Wan, J.; Sun, J.; Zhao, X.-L.; et al. Emission of brominated pollutants from waste printed circuit boards during thermal treatment: A review. Aerosol Air Qual. Res. 2023, 23, 230135.
- 56.
Liang, J.; Lu, G.; Wang, R.; et al. The formation pathways of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from pyrolysis of polybrominated diphenyl ethers (PBDEs): Effects of bromination arrangement and level. J. Hazard. Mater. 2020, 399, 123004.
- 57.
Wang, Y.; Huang, J.; Long, Y.; et al. Influence of bromination arrangement and level on the formation of polybrominated dibenzo-p-dioxins and dibenzofurans from pyrolysis and combustion of polybrominated diphenyl ethers: Mechanisms and kinetics. J. Clean. Prod. 2024, 435, 140543.
- 58.
Hart, J.R. Insights of potential by-product emissions from halogenated flame-retardant combustion by chemical equilibrium calculations. Int. J. Chem. Model. 2016, 8, 341–351.
- 59.
Purser, D. Fire safety performance of flame retardants compared with toxic and environmental hazards. In Polymer Green Flame Retardants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 45–86.
- 60.
Saeed, A. Studies on the Decomposition of Selected Brominated Flame Retardants (BFRs) and Formation of Polybrominated Dibenzo-p-dioxins and Dibenzofurans (PBDD/Fs) and Mixed Halogenated Dibenzo-p-dioxins and Dibenzofurans (PXDD/Fs). Ph.D. Thesis, Murdoch University, Perth, WA, Australia, 2016.
- 61.
Xin, S.; Gao, W.; Wang, Y.; et al. Identification of the released and transformed products during the thermal decomposition of a highly chlorinated paraffin. Environ. Sci. Technol. 2018, 52, 10153–10162.
- 62.
Lombardi, L.; Carnevale, E.; Corti, A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag. 2015, 37, 26–44.
- 63.
Sakai, S.; Watanabe, J.; Honda, Y.; et al. Combustion of brominated flame retardants and behavior of its byproducts. Chemosphere 2001, 42, 519–531.
- 64.
Matsukami, H.; Kose, T.; Watanabe, M.; et al. Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs. Sci. Total Environ. 2014, 493, 672–681.
- 65.
Kwon, E.-H.; Yoon, Y.-S.; Jeon, T.-W.; et al. Study on Thermal Treatment of Chlorinated Flame Retardant in Waste Containing Halogen Flame Retardant. J. Korean Soc. Hazard Mitig. 2018, 18, 655–663.
- 66.
Liang, Y.; Xu, D.; Feng, P.; et al. Municipal sewage sludge incineration and its air pollution control. J. Clean. Prod. 2021, 295, 126456.
- 67.
Yang, H.-H.; Cheruiyot, N.K.; Lin, C.; et al. Control of extreme brominated persistent organic pollutant emissions from start-ups of waste-to-energy incinerators. J. Clean. Prod. 2022, 345, 131108.
- 68.
Wang, R.; Xu, Z. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review. Waste Manag. 2014, 34, 1455–1469.
- 69.
Hu, X.; Gholizadeh, M. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. J. Energy Chem. 2019, 39, 109–143.
- 70.
Tange, L.; Drohmann, D. Waste electrical and electronic equipment plastics with brominated flame retardants–from legislation to separate treatment–thermal processes. Polym. Degrad. Stab. 2005, 88, 35–40.
- 71.
Grause, G.; Furusawa, M.; Okuwaki, A.; et al. Pyrolysis of tetrabromobisphenol-A containing paper laminated printed circuit boards. Chemosphere 2008, 71, 872–878.
- 72.
Ye, Z.; Yang, F.; Lin, W.; et al. Improvement of pyrolysis oil obtained from co-pyrolysis of WPCBs and compound additive during two stage pyrolysis. J. Anal. Appl. Pyrolysis 2018, 135, 415–421.
- 73.
Zhu, P.; Sui, S.; Wang, B.; et al. A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY–GC–MS. J. Anal. Appl. Pyrolysis 2004, 71, 645–655.
- 74.
Eschenbacher, A.; Varghese, R.J.; Weng, J.; et al. Fast pyrolysis of polyurethanes and polyisocyanurate with and without flame retardant: Compounds of interest for chemical recycling. J. Anal. Appl. Pyrolysis 2021, 160, 105374.
- 75.
Chen, G.; Liu, T.; Luan, P.; et al. Distribution, migration, and removal of N-containing products during polyurethane pyrolysis: A review. J. Hazard. Mater. 2023, 453, 131406.
- 76.
Cho, S.-H.; Park, J.; Jung, S.; et al. Syngas Production via CO2-Mediated Melamine Pyrolysis. ACS Sustain. Chem. Eng. 2024, 12, 2476–2483.
- 77.
Kumagai, S.; Grause, G.; Kameda, T.; et al. Thermal decomposition of tetrabromobisphenol-A containing printed circuit boards in the presence of calcium hydroxide. J. Mater. Cycles Waste Manag. 2017, 19, 282–293.
- 78.
Charitopoulou, M.A.; Stefanidis, S.D.; Lappas, A.A.; et al. Catalytic pyrolysis of polymers with brominated flame-retardants originating in waste electric and electronic equipment (WEEE) using various catalysts. Sustain. Chem. Pharm. 2022, 26, 100612.
- 79.
Chen, Y.; Ke, Y.; Liang, S.; et al. Enhanced bromine fixation and tar lightweighting in co-pyrolysis of non-metallic fractions of waste printed circuit boards with Bayer red mud. Waste Manag. 2023, 162, 72–82.
- 80.
Zhan, H.; Zhuang, X.; Song, Y.; et al. Formation and regulatory mechanisms of N-containing gaseous pollutants during stage-pyrolysis of agricultural biowastes. J. Clean. Prod. 2019, 236, 117706.
- 81.
Sajid, M.; Raheem, A.; Ullah, N.; et al. Gasification of municipal solid waste: Progress, challenges, and prospects. Renew. Sustain. Energy Rev. 2022, 168, 112815.
- 82.
Lidman Olsson, E.O.; Glarborg, P.; et al. Release of P from pyrolysis, combustion, and gasification of biomass—A model compound study. Energy Fuels 2021, 35, 15817–15830.
- 83.
Yamawaki, T. The gasification recycling technology of plastics WEEE containing brominated flame retardants. Fire Mater. 2003, 27, 315–319.
- 84.
Lo, Y.-P.; Prabu, S.; Chang, M.-B.; et al. Hydrogen production and pollutants emission characteristics by co-gasified of paper-mill sludge and automobile shredder residues in a commercial scale fluidized bed gasifier. Int. J. Hydrogen Energy 2024, 52, 46–57.
- 85.
Ciuffi, B.; Chiaramonti, D.; Rizzo, A.M.; et al. A critical review of SCWG in the context of available gasification technologies for plastic waste. Appl. Sci. 2020, 10, 6307.
- 86.
Alvarez, J.; Kumagai, S.; Wu, C.; et al. Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. Int. J. Hydrog. Energy 2014, 39, 10883–10891.
- 87.
Pinto, F.; Franco, C.; André, R.; et al. Co-gasification study of biomass mixed with plastic wastes. Fuel 2002, 81, 291–297.
- 88.
Weiland, F.; Lundin, L.; Celebi, M.; et al. Aspects of chemical recycling of complex plastic waste via the gasification route. Waste Manag. 2021, 126, 65–77.
- 89.
Lachos-Perez, D.; Torres-Mayanga, P.C.; Abaide, E.R.; et al. Hydrothermal carbonization and Liquefaction: Differences, progress, challenges, and opportunities. Bioresour. Technol. 2022, 343, 126084.
- 90.
Uddin, M.A.; Bhaskar, T.; Kusaba, T.; et al. Debromination of flame retardant high impact polystyrene (HIPS-Br) by hydrothermal treatment and recovery of bromine free plastics. Green Chem. 2003, 5, 260–263.
- 91.
Nose, K.; Hashimoto, S.; Takahashi, S.; et al. Degradation pathways of decabromodiphenyl ether during hydrothermal treatment. Chemosphere 2007, 68, 120–125.
- 92.
Yin, J.; Li, G.; He, W.; et al. Hydrothermal decomposition of brominated epoxy resin in waste printed circuit boards. J. Anal. Appl. Pyrolysis 2011, 92, 131–136.
- 93.
Zhan, L.; Zhao, X.; Ahmad, Z.; et al. Leaching behavior of Sb and Br from E-waste flame retardant plastics. Chemosphere 2020, 245, 125684.
- 94.
Xue, Y.; Bai, L.; Chi, M.; et al. Co-hydrothermal carbonization of lignocellulose biomass and polyvinyl chloride: The migration and transformation of chlorine. Chem. Eng. J. 2022, 446, 137155.
- 95.
Xiu, F.-R.; Bai, Q.; Qi, Y.; et al. An alkali-enhanced subcritical water treatment strategy of short-chain chlorinated paraffins: Dechlorination and hydrocarbons recovery. Sci. Total Environ. 2023, 904, 166574.
- 96.
Tangredi, A.; Barca, C.; Ferrasse, J.-H.; et al. Effect of process parameters on phosphorus conversion pathways during hydrothermal treatment of sewage sludge: A review. Chem. Eng. J. 2023, 463, 142342.
- 97.
Li, J.; Jin, J.; Zhao, Y.; et al. Enhancing phosphorus bioavailability in sewage sludge through co-hydrothermal treatment with biomass. J. Water Process Eng. 2023, 51, 103448.
- 98.
Huang, R.; Tang, Y. Speciation dynamics of phosphorus during (hydro) thermal treatments of sewage sludge. Environ. Sci. Technol. 2015, 49, 14466–14474.
- 99.
Aragón-Briceño, C.; Pozarlik, A.; Bramer, E.; et al. Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review. Renew. Energy 2021, 171, 401–415.
- 100.
Tang, L.; Hu, Z.; Gao, P.; et al. Transformation characteristics of nitrogen, sulfur and chlorine during microwave-assisted hydrothermal treatment of excavated waste. J. Clean. Prod. 2023, 384, 135638.
- 101.
Song, Q.; Feng, Y.; Liu, G.; et al. Degradation of the flame retardant triphenyl phosphate by ferrous ion-activated hydrogen peroxide and persulfate: Kinetics, pathways, and mechanisms. Chem. Eng. J. 2019, 361, 929–936.
- 102.
Yang, P.; Liu, J.; Korshin, G.V.; et al. New insights into the role of nitrite in the degradation of tetrabromobisphenol S by sulfate radical oxidation. Environ. Sci. Technol. 2022, 56, 17743–17752.
- 103.
Chen, Z.; Wang, L.; Xu, H.; et al. Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A. Chem. Eng. J. 2020, 389, 124345.
- 104.
Han, Q.; Dong, W.; Wang, H.; et al. Degradation of tetrabromobisphenol A by ferrate (VI) oxidation: Performance, inorganic and organic products, pathway and toxicity control. Chemosphere 2018, 198, 92–102.
- 105.
Ma, C.; Guo, Z.; Fang, Z.; et al. Flame retardancy and chemical degradation of epoxy containing phenylphosphonate group under mild conditions. Compos. Part B Eng. 2022, 239, 109967.
- 106.
Dang, Y.; Tang, K.; Wang, Z.; et al. Organophosphate esters (OPEs) flame retardants in water: A review of photocatalysis, adsorption, and biological degradation. Molecules 2023, 28, 2983.
- 107.
Rani, M.; Sillanpää, M.; Shanker, U. An updated review on environmental occurrence, scientific assessment and removal of brominated flame retardants by engineered nanomaterials. J. Environ. Manag. 2022, 321, 115998.
- 108.
Yuan, X.; Lacorte, S.; Cristale, J.; et al. Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments. Sep. Purif. Technol. 2015, 156, 1028–1034.
- 109.
Antonopoulou, M.; Giannakas, A.; Bairamis, F.; et al. Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N, S-codoped TiO2 photocatalysts. Chem. Eng. J. 2017, 318, 231–239.
- 110.
Ling, S.; Huang, K.; Tariq, M.; et al. Photodegradation of novel brominated flame retardants (NBFRs) in a liquid system: Kinetics and photoproducts. Chem. Eng. J. 2019, 362, 938–946.
- 111.
Hou, R.; Wang, Y.; Zhou, S.; et al. Aerobic degradation of nonhalogenated organophosphate flame esters (OPEs) by enriched cultures from sludge: Kinetics, pathways, bacterial community evolution, and toxicity evaluation. Sci. Total Environ. 2021, 760, 143385.
- 112.
Cámara, B.; Herrera, C.; González, M.; et al. From PCBs to highly toxic metabolites by the biphenyl pathway. Environ. Microbiol. 2004, 6, 842–850.
- 113.
Segev, O.; Kushmaro, A.; Brenner, A. Environmental impact of flame retardants (persistence and biodegradability). Int. J. Environ. Res. Public Health 2009, 6, 478–491.
- 114.
Zhang, M.; Shi, Q.; Song, X.; et al. Recent electrochemical methods in electrochemical degradation of halogenated organics: A review. Environ. Sci. Pollut. Res. 2019, 26, 10457–10486.
- 115.
Huang, Z.; Deng, D.; Qiao, J.; et al. New insight into the cosolvent effect on the degradation of tetrabromobisphenol A (TBBPA) over millimeter-scale palladised sponge iron (Pd-s-Fe0) particles. Chem. Eng. J. 2019, 361, 1423–1436.
- 116.
Oturan, N.; Van Hullebusch, E.D.; Zhang, H.; et al. Occurrence and removal of organic micropollutants in landfill leachates treated by electrochemical advanced oxidation processes. Environ. Sci. Technol. 2015, 49, 12187–12196.
- 117.
Tang, S.; Luo, Z.; Liao, J.; et al. Degradation and detoxification mechanisms of organophosphorus flame retardant tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) during electrochemical oxidation process. Chin. Chem. Lett. 2023, 34, 108090.
- 118.
Dong, J.; Li, G.; Gao, J.; et al. Catalytic degradation of brominated flame retardants in the environment: New techniques and research highlights. Sci. Total Environ. 2022, 848, 157695.
- 119.
Ishii, A.; Amagai, K.; Furuhata, T.; et al. Thermal gasification behavior of plastics with flame retardant. Fuel 2007, 86, 2475–2484.
- 120.
Boro, B.; Tiwari, P. Effect of metals and brominated flame retardants on thermal degradation kinetics of waste printed circuit board. Thermochim. Acta 2024, 736, 179747.
- 121.
Bifulco, A.; Chen, J.; Sekar, A.; et al. Recycling of flame retardant polymers: Current technologies and future perspectives. J. Mater. Sci. Technol. 2024, 199, 156–183.
- 122.
Tang, W.; Hsiao, C.-Y.; Lin, S.-L.; et al. Mitigation of PBDE net discharge in hazardous waste thermal treatment system through reintroducion of sludge and fly ash into GASMILD operations. Chemosphere 2024, 364, 143026.
- 123.
Wang, Y.; Wu, K.; Liu, Q.; et al. Low chlorine oil production through fast pyrolysis of mixed plastics combined with hydrothermal dechlorination pretreatment. Process Saf. Environ. Prot. 2021, 149, 105–114.