- 1.
Nimita Jebaranjitham, J.; Selvan Christyraj, J.D.; Prasannan, A.; et al. Current Scenario of Solid Waste Management Techniques and Challenges in COVID-19—A Review. Heliyon 2022, 8, e09855. https://doi.org/10.1016/J.HELIYON.2022.E09855.
- 2.
Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; et al. Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. Int. J. Environ. Res. Public Health 2022, 19, 12717. https://doi.org/10.3390/IJERPH191912717.
- 3.
Report of the Task Force on Waste to Energy (Volume I) (In the Context of Integrated MSW Management). 2014. Available online: https://sbmurban.org/storage/app/media/pdf/Task_force_report_on_WTE.pdf (accessed on 7 May 2025).
- 4.
Annual Report, Ministry of Environment, Forest and Climate Change. New Delhi, 2015. Available online: https://moef.gov.in/wp-content/uploads/2018/04/MinistryofEnvirormentAnnualReport2015-16English.pdf (accessed on 17 May 2023).
- 5.
Guo, M.; Lin, J.; Yu, J.; et al. Configuration Optimization of a Biomass Chemical Looping Gasification (CLG) System Combined with CO2 Absorption. Renew. Energy 2024, 237, 121459. https://doi.org/10.1016/J.RENENE.2024.121459.
- 6.
Li, J.; Fu, W.; Bai, X.; et al. Oxidative Pyrolysis Characteristics and Exothermic Heat Release Effects of Cellulose, Hemicellulose, and Lignin. Fuel 2025, 386, 134212. https://doi.org/10.1016/J.FUEL.2024.134212.
- 7.
Racero-Galaraga, D.; Rhenals-Julio, J.D.; Sofan-German, S.; et al. Proximate Analysis in Biomass: Standards, Applications and Key Characteristics. Results Chem. 2024, 12, 101886. https://doi.org/10.1016/J.RECHEM.2024.101886.
- 8.
Puri, L.; Hu, Y.; Naterer, G. Critical Review of the Role of Ash Content and Composition in Biomass Pyrolysis. Front. Fuels 2024, 2, 1378361. https://doi.org/10.3389/FFUEL.2024.1378361.
- 9.
Liu, Y.; Yin, K.; Wu, J.; et al. Ash Chemistry in Chemical Looping Process for Biomass Valorization: A Review. Chem. Eng. J. 2023, 478, 147429. https://doi.org/10.1016/J.CEJ.2023.147429.
- 10.
Ranzi, E.; Faravelli, T.; Manenti, F. Pyrolysis, Gasification, and Combustion of Solid Fuels. In Advances in Chemical Engineering; Academic Press: Cambridge, MA, USA, 2016; Volume 49, pp 1–94. https://doi.org/10.1016/BS.ACHE.2016.09.001.
- 11.
Gao, Y.; Wang, M.; Raheem, A.; et al. Syngas Production from Biomass Gasification: Influences of Feedstock Properties, Reactor Type, and Reaction Parameters. ACS Omega 2023, 8, 31620–31631. https://doi.org/10.1021/ACSOMEGA.3C03050.
- 12.
Jayanarasimhan, A.; Pathak, R.M.; Shivapuji, A.M.; et al. Tar Formation in Gasification Systems: A Holistic Review of Remediation Approaches and Removal Methods. ACS Omega 2024, 9, 2060–2079. https://doi.org/10.1021/ACSOMEGA.3C04425.
- 13.
Chen, D.; Yin, L.; Wang, H.; et al. Pyrolysis Technologies for Municipal Solid Waste: A Review. Waste Manag. 2014, 34, 2466–2486. https://doi.org/10.1016/J.WASMAN.2014.08.004.
- 14.
Al-Rumaihi, A.; Shahbaz, M.; Mckay, G.; et al. A Review of Pyrolysis Technologies and Feedstock: A Blending Approach for Plastic and Biomass towards Optimum Biochar Yield. Renew. Sustain. Energy Rev. 2022, 167, 112715. https://doi.org/10.1016/J.RSER.2022.112715.
- 15.
Kumar, A.; Thakur, A.K.; Gaurav, G.K.; et al. A Critical Review on Sustainable Hazardous Waste Management Strategies: A Step towards a Circular Economy. Environ. Sci. Pollut. Res. 2023 3048 2023, 30, 105030–105055. https://doi.org/10.1007/S11356-023-29511-8.
- 16.
Brunner, P.H.; Morf, L.S. Waste to Energy, Indispensable Cornerstone for Circular Economy: A Mini-Review. Waste Manag. Res. 2025, 43, 26–38. https://doi.org/10.1177/0734242X241227376.
- 17.
Farooq, A.; Haputta, P.; Silalertruksa, T.; et al. A Framework for the Selection of Suitable Waste to Energy Technologies for a Sustainable Municipal Solid Waste Management System. Front. Sustain. 2021, 2, 681690. https://doi.org/10.3389/FRSUS.2021.681690.
- 18.
Materazzi, M.; Lettieri, P.; Taylor, R.; et al. Performance Analysis of RDF Gasification in a Two Stage Fluidized Bed–Plasma Process. Waste Manag. 2016, 47, 256–266. https://doi.org/10.1016/J.WASMAN.2015.06.016.
- 19.
Dong, J.; Tang, Y.; Nzihou, A.; et al. Comparison of Waste-to-Energy Technologies of Gasification and Incineration Using Life Cycle Assessment: Case Studies in Finland, France and China. J. Clean. Prod. 2018, 203, 287–300. https://doi.org/10.1016/J.JCLEPRO.2018.08.139.
- 20.
Achinas, S.; Gramsbergen, M.; Achinas, V.; et al. Waste-to-Energy Technologies: Industrial Progress for Boosting the Circular Economy; Springer: Singapore, 2021. https://doi.org/10.1007/978-981-15-7525-9_106-1.
- 21.
Seo, Y.-C.; Alam, M.T.; Yang, W.-S.; et al. Gasification of Municipal Solid Waste. In Gasification for Low-grade Feedstock; IntechOpen: London, UK, 2018. https://doi.org/10.5772/INTECHOPEN.73685.
- 22.
Tauqir, W.; Zubair, M.; Nazir, H. Parametric Analysis of a Steady State Equilibrium-Based Biomass Gasification Model for Syngas and Biochar Production and Heat Generation. Energy Convers. Manag. 2019, 199, 111954. https://doi.org/10.1016/J.ENCONMAN.2019.111954.
- 23.
Su, Y.; Luo, Y.; Chen, Y.; et al. Experimental and Numerical Investigation of Tar Destruction under Partial Oxidation Environment. Fuel Process. Technol. 2011, 92, 1513–1524. https://doi.org/10.1016/J.FUPROC.2011.03.013.
- 24.
Valderrama Rios, M.L.; González, A. M.; Lora, E.E.S.; et al. Reduction of Tar Generated during Biomass Gasification: A Review. Biomass Bioenergy 2018, 108, 345–370. https://doi.org/10.1016/J.BIOMBIOE.2017.12.002.
- 25.
Lan, W.; Chen, G.; Zhu, X.; et al. Progress in Techniques of Biomass Conversion into Syngas. J. Energy Inst. 2015, 88, 151–156. https://doi.org/10.1016/J.JOEI.2014.05.003.
- 26.
Sher, F.; Hameed, S.; Smječanin Omerbegović, N.; et al. Cutting-Edge Biomass Gasification Technologies for Renewable Energy Generation and Achieving Net Zero Emissions. Energy Convers. Manag. 2025, 323, 119213. https://doi.org/10.1016/J.ENCONMAN.2024.119213.
- 27.
Sikarwar, V.S.; Zhao, M.; Clough, P.; et al. An Overview of Advances in Biomass Gasification. Energy Environ. Sci. 2016, 9, 2939–2977. https://doi.org/10.1039/C6EE00935B.
- 28.
Thakare, S.; Nandi, S. Study on Potential of Gasification Technology for Municipal Solid Waste (MSW) in Pune City. Energy Procedia 2016, 90, 509–517. https://doi.org/10.1016/J.EGYPRO.2016.11.218.
- 29.
Saravanakumar, A.; Vijayakumar, P.; Hoang, A. T.; et al. Thermochemical Conversion of Large-Size Woody Biomass for Carbon Neutrality: Principles, Applications, and Issues. Bioresour. Technol. 2023, 370, 128562. https://doi.org/10.1016/J.BIORTECH.2022.128562.