- 1.
Nullis, C. WMO Greenhouse Gas Bulletin. More Bad News for the Planet: Greenhouse Gas Levels Hit New Highs. Switzerland: World Meteorological Organization 2022. Available online: https://wmo.int/news/media-centre/more-bad-news-planet-greenhouse-gas-levels-hit-new-highs (accessed on 30 April 2025).
- 2.
Aniza, R.; Chen, W.-H.; Pétrissans, A.; et al. A review of biowaste remediation and valorization for environmental sustainability: Artificial intelligence approach. Environ. Pollut. 2023, 324, 121363. https://doi.org/10.1016/j.envpol.2023.121363.
- 3.
Vuppaladadiyam, A.K.; Vuppaladadiyam, S.S.V.; Sahoo, A.; et al. Bio-oil and biochar from the pyrolytic conversion of biomass: A current and future perspective on the trade-off between economic, environmental, and technical indicators. Sci. Total Environ. 2023, 857, 159155. https://doi.org/10.1016/j.scitotenv.2022.159155.
- 4.
Congyu, Z.; Jin, F.; Yong, Z.; et al. Life Cycle Assessment of Microalgal Carbon Fixation and Torrefaction for Carbon Neutralization: A State-of-the-Art Review. Green Energy Fuel Res. 2024, 1, 23–38. https://doi.org/10.53941/gefr.2024.100004.
- 5.
Tubbesing, C.L.; Lara, J.D.; Battles, J.J.; et al. Characterization of the woody biomass feedstock potential resulting from California’s drought. Sci. Rep. 2020, 10, 1096. https://doi.org/10.1038/s41598-020-57904-z.
- 6.
Lin, S.L.; Aniza, R.; Lee, Y.Y.; et al. Reduction of traditional pollutants and polychlorinated dibenzo-p-dioxins and dibenzofurans emitted from a diesel engine generator equipped with a catalytic ceramic fiber filter system. Clean Technol. Environ. Policy 2018, 20, 1297–1309. https://doi.org/10.1007/s10098-018-1559-6.
- 7.
Lee, Y.Y.; Lin, S.L.; Aniza, R.; et al. Reduction of atmospheric PM2.5 level by restricting the idling operation of buses in a busy station. Aerosol Air Qual. Res. 2017, 17, 2424–2437. https://doi.org/10.4209/aaqr.2017.09.0301.
- 8.
Aniza, R.; Chen, W.-H.; Herrera, C.J.A.; et al. Bioenergy and bioexergy analyses with artificial intelligence application on combustion of recycled hardwood and softwood wastes. Renew. Energy 2024, 237, 121885. https://doi.org/10.1016/j.renene.2024.121885.
- 9.
Pétrissans, A.; Lin, Y.-Y.; Nguyen, T.N.; et al. Influence of the heating rate on the thermodegradation during the mild pyrolysis of the wood. Wood Mater. Sci. Eng. 2023, 18, 412–421. https://doi.org/10.1080/17480272.2022.2039289.
- 10.
Aniza, R.; Petrissans, A.; Petrissans, M. Multifunctional Nanotechnology Application for Wood Properties Enhancement: Adhesive and Coating. In Nanomaterials Additives in Bioadhesives for Wood Composites; Antov, P., Lubis, M.A.R., Lee, S.H., Taghiyari, H.R., Eds.; Springer Nature: Singapore, 2025; pp. 135–149.
- 11.
Aniza, R.; Petrissans, A.; Petrissans, M. Life-Cycle Assessment of Nanoparticle in Wood Adhesive and Coating: The State-of-The Art. In Nanomaterials Additives in Bioadhesives for Wood Composites; Antov, P., Lubis, M.A.R., Lee, S.H., Taghiyari, H.R., Eds.; Springer Nature: Singapore, 2025; pp. 231–248.
- 12.
Andrade Breves, R.; Ajiola, D.; de Vasconcelos Vieira Lopes, R.; et al. Bio-Based Polyurethane Composites from Macauba Kernel Oil: Part 1, Matrix Synthesis from Glycerol-Based Polyol. J. Compos. Sci. 2024, 8, 363.
- 13.
Aniza, R.; Chen, W.-H.; Kwon, E.E.; et al. Lignocellulosic biofuel properties and reactivity analyzed by thermogravimetric analysis (TGA) toward zero carbon scheme: A critical review. Energy Convers. Manag. X 2024, 22, 100538. https://doi.org/10.1016/j.ecmx.2024.100538.
- 14.
Chen, W.-H.; Escalante, J.; Xuan, L.L.; et al. Catalytic co-gasification optimization of biomass and polyethylene wastes in oxygen-rich environments. Fuel 2025, 381, 133214. https://doi.org/10.1016/j.fuel.2024.133214.
- 15.
McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. https://doi.org/10.1016/S0960-8524(01)00118-3.
- 16.
Chen, W.-H.; Lin, B.-J.; Lin, Y.-Y.; et al. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887.
- 17.
Acharya, B.; Dutta, A.; Minaret, J. Review on comparative study of dry and wet torrefaction. Sustain. Energy Technol. Assess. 2015, 12, 26–37. https://doi.org/10.1016/j.seta.2015.08.003.
- 18.
Wang, L.; Riva, L.; Skreiberg, Ø.; et al. Effect of Torrefaction on Properties of Pellets Produced from Woody Biomass. Energy Fuels 2020, 34, 15343–15354. https://doi.org/10.1021/acs.energyfuels.0c02671.
- 19.
Cahyanti, M.N.; Doddapaneni, T.R.K.C.; Kikas, T. Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresour. Technol. 2020, 301, 122737. https://doi.org/10.1016/j.biortech.2020.122737.
- 20.
Amit Kumar, S. Solar Thermal Technologies for Biofuel Production: Recent Advances and Future Prospectus. Green Energy Fuel Res. 2025, 2, 13–25. https://doi.org/10.53941/gefr.2025.100002
- 21.
Chen, W.-H. Progress in Green Energy and Fuel for Sustainability. Green Energy Fuel Res. 2024, 1, 13–22. https://doi.org/10.53941/gefr.2024.100003.
- 22.
Richa, L.; Colin, B.; Pétrissans, A.; et al. Potassium carbonate impregnation and torrefaction of wood block for thermal properties improvement: Prediction of torrefaction performance using artificial neural network. Appl. Energy 2023, 351, 121894. https://doi.org/10.1016/j.apenergy.2023.121894.
- 23.
Nishimura, M.; Iwasaki, S.; Horio, M. The role of potassium carbonate on cellulose pyrolysis. J. Taiwan Inst. Chem. Eng. 2009, 40, 630–637.
- 24.
Richa, L.; Colin, B.; Pétrissans, A.; et al. Catalytic and char-promoting effects of potassium on lignocellulosic biomass torrefaction and pyrolysis. Environ. Technol. Innov. 2023, 31, 103193. https://doi.org/10.1016/j.eti.2023.103193.
- 25.
Guo, F.; Liu, Y.; Wang, Y.; et al. Pyrolysis kinetics and behavior of potassium-impregnated pine wood in TGA and a fixed-bed reactor. Energy Convers. Manag. 2016, 130, 184–191. https://doi.org/10.1016/j.enconman.2016.10.055.
- 26.
Zhao, N.; Li, B.-X. The effect of sodium chloride on the pyrolysis of rice husk. Appl. Energy 2016, 178, 346–352. https://doi.org/10.1016/j.apenergy.2016.06.082.
- 27.
Zhu, C.; Huang, K.; Xue, M.; et al. Effect of MgCl2 Loading on the Yield and Performance of Cabbage-Based Biochar. Bioengineering 2023, 10, 836. https://doi.org/10.3390/bioengineering10070836.
- 28.
Pradana, Y.S.; Daniyanto; Hartono, M.; Prasakti, L.; et al. Effect of calcium and magnesium catalyst on pyrolysis kinetic of Indonesian sugarcane bagasse for biofuel production. Energy Procedia 2019, 158, 431–439. https://doi.org/10.1016/j.egypro.2019.01.128.
- 29.
Müller, T.E.; Leitner, W. CO2 Chemistry. Beilstein J. Org. Chem. 2015, 11, 675–677. https://doi.org/10.3762/bjoc.11.76.
- 30.
Nyakuma, B.B.; Wong, S.L.; Faizal, H.M.; et al. Carbon dioxide torrefaction of oil palm empty fruit bunches pellets: Characterisation and optimisation by response surface methodology. Biomass Convers. Biorefinery 2022, 12, 5881–5900. https://doi.org/10.1007/s13399-020-01071-8.
- 31.
Cho, D.-W.; Cho, S.-H.; Song, H.; et al. Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground. Bioresour. Technol. 2015, 189, 1–6. https://doi.org/10.1016/j.biortech.2015.04.002
- 32.
Kim, J.; Lee, J.; Kim, K.-H.; et al. Pyrolysis of wastes generated through saccharification of oak tree by using CO2 as reaction medium. Appl. Therm. Eng. 2017, 110, 335–345. https://doi.org/10.1016/j.applthermaleng.2016.08.200.
- 33.
Guizani, C.; Escudero Sanz, F.J.; Salvador, S. Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel 2014, 116, 310–320. https://doi.org/10.1016/j.fuel.2013.07.101.
- 34.
Chen, D.; Chen, F.; Cen, K.; et al. Upgrading rice husk via oxidative torrefaction: Characterization of solid, liquid, gaseous products and a comparison with non-oxidative torrefaction. Fuel 2020, 275, 117936. https://doi.org/10.1016/j.fuel.2020.117936.
- 35.
Dutta, S.; Bhat, N.S. Catalytic Transformation of Biomass-Derived Furfurals to Cyclopentanones and Their Derivatives: A Review. ACS Omega 2021, 6, 35145–35172. https://doi.org/10.1021/acsomega.1c05861.
- 36.
Jung, D.; Duman, G.; Zimmermann, M.; et al. Hydrothermal carbonization of fructose—Effect of salts and reactor stirring on the growth and formation of carbon spheres. Biomass Convers. Biorefinery 2023, 13, 6281–6297. https://doi.org/10.1007/s13399-021-01782-6.
- 37.
Niu, Q.; Du, X.; Li, K.; et al. Role of catalyst porosity and acidity in nitrogen transformation during catalytic fast pyrolysis of microalgae: Study on extracted protein and model amino acids. Energy Convers. Manag. 2024, 322, 119210. https://doi.org/10.1016/j.enconman.2024.119210.
- 38.
Nsibi, C.; Pozzobon, V.; Escudero-Sanz, J.; et al. Catalytic Effects of Potassium Concentration on Steam Gasification of Biofuels Blended from Olive Mill Solid Wastes and Pine Sawdust for a Sustainable Energy of Syngas. Sustainability 2024, 16, 9040.
- 39.
Chen, W.-H.; Aniza, R. Specific chemical bioexergy and microwave-assisted torrefaction optimization via statistical and artificial intelligence approaches. Fuel 2023, 333, 126524. https://doi.org/10.1016/j.fuel.2022.126524.
- 40.
Md Salim, R.; Asik, J.; Sarjadi, M.S. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci. Technol. 2021, 55, 295–313. https://doi.org/10.1007/s00226-020-01258-2.
- 41.
Liu, Y.; Rokni, E.; Yang, R.; et al. Torrefaction of corn straw in oxygen and carbon dioxide containing gases: Mass/energy yields and evolution of gaseous species. Fuel 2021, 285, 119044. https://doi.org/10.1016/j.fuel.2020.119044.
- 42.
Shahbeik, H.; Kazemi Shariat Panahi, H.; Dehhaghi, M.; et al. Biomass to biofuels using hydrothermal liquefaction: A comprehensive review. Renew. Sustain. Energy Rev. 2024, 189, 113976. https://doi.org/10.1016/j.rser.2023.113976.
- 43.
Basu, P. Chapter 7—Gasification Theory. In Biomass Gasification, Pyrolysis and Torrefaction, 3rd ed.; Basu, P., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 211–262.
- 44.
Eseltine, D.; Thanapal, S.S.; Annamalai, K.; et al. Torrefaction of woody biomass (Juniper and Mesquite) using inert and non-inert gases. Fuel 2013, 113, 379–388
- 45.
Uemura, Y.; Saadon, S.; Osman, N.; et al. Torrefaction of oil palm kernel shell in the presence of oxygen and carbon dioxide. Fuel 2015, 144, 171–179. https://doi.org/10.1016/j.fuel.2014.12.050.
- 46.
Cho, D.-W.; Lee, J.; Yoon, K.; et al. Pyrolysis of FeCl3-pretreated spent coffee grounds using CO2 as a reaction medium. Energy Convers. Manag. 2016, 127, 437–442. https://doi.org/10.1016/j.enconman.2016.09.036.
- 47.
Quan, C.; Zhou, Y.; Gao, N.; et al. Direct CO2 capture from air using char from pyrolysis of digestate solid. Biomass Bioenergy 2023, 175, 106891. https://doi.org/10.1016/j.biombioe.2023.106891.
- 48.
Sun, Y.; Dong, B.; Wang, L.; et al. Technology selection for capturing CO2 from wood pyrolysis. Energy Convers. Manag. 2022, 266, 115835. https://doi.org/10.1016/j.enconman.2022.115835.
- 49.
Wang, T.; Hsu, C.-L.; Huang, C.-H.; et al. Environmental impact of CO2-expanded fluid extraction technique in microalgae oil acquisition. J. Clean. Prod. 2016, 137, 813–820. https://doi.org/10.1016/j.jclepro.2016.07.179.
- 50.
Aho, A.; DeMartini, N.; Pranovich, A.; et al. Pyrolysis of pine and gasification of pine chars—Influence of organically bound metals. Bioresour. Technol. 2013, 128, 22–29. https://doi.org/10.1016/j.biortech.2012.10.093.
- 51.
Frost, D.L.; Goroshin, S.; Levine, J.; et al. Critical Conditions for Ignition of Aluminum Particles in Cylindrical Explosive Charges. AIP Conf. Proc. 2006, 845, 972–975. https://doi.org/10.1063/1.2263484.
- 52.
Barabulica, I.; Secula, M.S.; Asoltanei, A.M.; et al. Experimental Study on the Reaction of Magnesium in Carbon Dioxide and Nitrogen Atmosphere. ChemEngineering 2024, 8, 41.
- 53.
Zhang, S.; Wang, J.; Zhu, S.; et al. Effects of MgCl2 and Mg(NO3)2 loading on catalytic pyrolysis of sawdust for bio-oil and MgO-impregnated biochar production. J. Anal. Appl. Pyrolysis 2020, 152, 104962. https://doi.org/10.1016/j.jaap.2020.104962.
- 54.
Aniza, R.; Chen, W.-H.; Lin, Y.-Y.; et al. Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae. Appl. Energy 2021, 300, 117372. https://doi.org/10.1016/j.apenergy.2021.117372.
- 55.
Chen, R.; Zhang, S.; Cong, K.; et al. Insight into synergistic effects of biomass-polypropylene co-pyrolysis using representative biomass constituents. Bioresour. Technol. 2020, 307, 123243. https://doi.org/10.1016/j.biortech.2020.123243.
- 56.
Menéndez, J.A.; Arenillas, A.; Fidalgo, B.; et al. Microwave heating processes involving carbon materials. Fuel Process. Technol. 2010, 91, 1–8. https://doi.org/10.1016/j.fuproc.2009.08.021.
- 57.
Dupont, C.; Boissonnet, G.; Seiler, J.-M.; et al. Study about the kinetic processes of biomass steam gasification. Fuel 2007, 86, 32–40. https://doi.org/10.1016/j.fuel.2006.06.011.
- 58.
Kawamoto, H. Review of reactions and molecular mechanisms in cellulose pyrolysis. Curr. Org. Chem. 2016, 20, 2444–2457.