- 1.
Twidell, J. Renewable Energy Resources; Routledge: London, UK, 2021.
- 2.
Tchanche, B.F.; Lambrinos, G.; Frangoudakis, A.; et al. Low-grade heat conversion into power using organic Rankine cycles—A review of various applications. Renew. Sustain. Energy Rev. 2011, 15, 3963–3979.
- 3.
Wieland, C.; Dawo, F.; Schifflechner, C.; et al. Market report on Organic Rankine Cycle power systems: Recent developments and outlook. In Proceedings of the 6th International Seminar on ORC Power Systems, Virtual, 11–13 October 2021.
- 4.
Tartière, T.; Astolfi, M. A world overview of the organic Rankine cycle market. Energy Procedia 2017, 129, 2–9.
- 5.
Quoilin, S.; Van Den Broek, M.; Declaye, S.; et al. Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renew. Sustain. Energy Rev. 2013, 22, 168–186.
- 6.
Liu, B.T.; Chien, K.H.; Wang, C.C. Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy 2004, 29, 1207–1217.
- 7.
White, M.; Sayma, A.I. Improving the economy-of-scale of small organic rankine cycle systems through appropriate working fluid selection. Appl. Energy 2016, 183, 1227–1239.
- 8.
Bianchi, M.; Branchini, L.; De Pascale, A.; et al. Performance and total warming impact assessment of pure fluids and mixtures replacing HFCs in micro-ORC energy systems. Appl. Therm. Eng. 2022, 203, 117888.
- 9.
Qiu, K.; Thomas, M.; Douglas, M. Investigation of a scroll expander driven by compressed air and its potential applications to ORC. Appl. Therm. Eng. 2018, 135, 109–115.
- 10.
Feng, X.; Shi, F.; Qiao, G.; et al. Integrating Organic Rankine Cycle with Thermoelectric Generator in Various Applications Utilizing Low-Grade Energy: A Review; Sustainable Energy Technologies and Assessments; Elsevier: Amsterdam, The Netherlands, 2024.
- 11.
Wu, T.; Wei, X.; Meng, X.; et al. Experimental study of operating load variation for organic Rankine cycle system based on radial inflow turbine. Appl. Therm. Eng. 2020, 166, 114641.
- 12.
Imran, M.; Usman, M.; Park, B.S.; et al. Volumetric expanders for low grade heat and waste heat recovery applications. Renew. Sustain. Energy Rev. 2016, 57, 1090–1109.
- 13.
Zheng, Y.; Hu, D.; Cao, Y.; et al. Preliminary design and off-design performance analysis of an Organic Rankine Cycle radial-inflow turbine based on mathematic method and CFD method. Appl. Therm. Eng. 2017, 112, 25–37.
- 14.
Dixon, S.L.; Eng, B.; Hall, C.A. Fluid Mechanics and Thermodynamics of Turbomachinery, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2014.
- 15.
Bao, J.; Zhao, L. A review of working fluid and expander selections for organic Rankine cycle. Renew. Sustain. Energy Rev. 2013, 24, 325–342.
- 16.
Sauret, E.; Gu, Y. Three-dimensional off-design numerical analysis of an organic Rankine cycle radial-inflow turbine. Appl. Energy 2014, 135, 202–211.
- 17.
Wang, Z.; Xie, B.; Xia, X.; et al. Entropy production analysis of a radial inflow turbine with variable inlet guide vane for ORC application. Energy 2023, 265, 126313.
- 18.
Al Jubori, A.; Daabo, A.; Al-Dadah, R.K.; et al. Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine cycle. Energy Convers. Manag. 2016, 130, 141–155.
- 19.
Yao, Y.; Fang, S.; Zhu, S.; et al. Optimal design and tip leakage flow characteristics analysis of radial inflow turbine used in organic Rankine and vapor compression refrigeration system. Energy 2024, 301, 131668.
- 20.
Dong, B.; Xu, G.; Luo, X.; et al. Analysis of the supercritical organic Rankine cycle and the radial turbine design for high temperature applications. Appl. Therm. Eng. 2017, 123, 1523–1530.
- 21.
Kim, D.Y.; Kim, Y.T. Preliminary design and performance analysis of a radial inflow turbine for organic Rankine cycles. Appl. Therm. Eng. 2017, 120, 549–559.
- 22.
Du, Y.; Yang, Y.; Hu, D.; et al. Off-design performance comparative analysis between basic and parallel dual-pressure organic Rankine cycles using radial inflow turbines. Appl. Therm. Eng. 2018, 138, 18–34.
- 23.
Xia, J.; Wang, J.; Wang, H.; et al. Three-dimensional performance analysis of a radial-inflow turbine for an organic Rankine cycle driven by low grade heat source. Energy Convers. Manag. 2018, 169, 22–33.
- 24.
Quan, Y.; Liu, J.; Zhang, C.; et al. Aerodynamic design of an axial impulse turbine for the high-temperature organic Rankine cycle. Appl. Therm. Eng. 2020, 167, 114708.
- 25.
Sarmiento, A.L.E.; Camacho, R.G.R.; de Oliveira, W.; et al. Design and off-design performance improvement of a radial-inflow turbine for ORC applications using metamodels and genetic algorithm optimization. Appl. Therm. Eng. 2021, 183, 116197.
- 26.
Li, B.; Xie, H.; Sun, L.; et al. Optimization design of radial inflow turbine combined with mean-line model and CFD analysis for geothermal power generation. Energy 2024, 291, 130452.
- 27.
Yu, H.; Helland, H.; Yu, X.; et al. Optimal design and operation of an Organic Rankine Cycle (ORC) system driven by solar energy with sensible thermal energy storage. Energy Convers. Manag. 2021, 244, 114494.
- 28.
Kupka, D.; Koloničný, J.; Pejchal, J. Development of an axial impulse turbine for a small-scale ORC system. Results Eng. 2025, 25, 103994.
- 29.
Al Jubori, A.M.; Al-Dadah, R.; Mahmoud, S. An innovative small-scale two-stage axial turbine for low-temperature organic Rankine cycle. Energy Convers. Manag. 2017, 144, 18–33.
- 30.
Witanowski, Ł.; Klonowicz, P.; Lampart, P.; et al. Multi-objective optimization of the ORC axial turbine for a waste heat recovery system working in two modes: Cogeneration and condensation. Energy 2023, 264, 126187.
- 31.
Yang, Y.; Huo, Y.; Xia, W.; et al. Construction and preliminary test of a geothermal ORC system using geothermal resource from abandoned oil wells in the Huabei oilfield of China. Energy 2017, 140, 633–645.
- 32.
Sun, H.; Qin, J.; Yan, P.; et al. Performance evaluation of a partially admitted axial turbine using R245fa, R123 and their mixtures as working fluid for small-scale organic Rankine cycle. Energy Convers. Manag. 2018, 171, 925–935.
- 33.
Al Jubori, A.M.; Al-Dadah, R.K.; Mahmoud, S.; et al. Modelling and parametric analysis of small-scale axial and radial-outflow turbines for Organic Rankine Cycle applications. Appl. Energy 2017, 190, 981–996.
- 34.
Peng, N.; Wang, E.; Meng, F. Off-design performance comparison of single-stage axial turbines using CO2 and zeotropic mixture for low-temperature heat source. Energy Convers. Manag. 2020, 213, 112838.
- 35.
Sun, H.; Qin, J.; Hung, T.C.; et al. Performance analysis of low speed axial impulse turbine using two type nozzles for small-scale organic Rankine cycle. Energy 2019, 169, 1139–1152.
- 36.
Naas, T.T.; Telha, M.; Laib, L.; et al. Performance enhancement of three-stage axial turbine for Clean Organic Rankine Cycle system driven by low-temperature heat source. Clean. Eng. Technol. 2021, 5, 100336.
- 37.
Klun, M.; Guzović, Z.; Rašković, P. Innovative small axial multistage turbine with partial admission for bottoming ORC. Energy Rep. 2021, 7, 9069–9093.
- 38.
Alshammari, F.; Pesyridis, A.; Elashmawy, M. Turbine optimization potential to improve automotive Rankine cycle performance. Appl. Therm. Eng. 2021, 186, 116559.
- 39.
Zengin, İ.; Erdoğan, B.; Benim, A.C. CFD and Taguchi based optimization of air driven single stage partial admission axial turbine blade profiles. Energy 2024, 290, 130333.
- 40.
Guan, Y.; Li, W.; Zhu, Y.; et al. Aerodynamic performance and flow characteristics of a compressed air energy storage axial turbine with nozzle governing. J. Energy Storage 2023, 63, 106967.
- 41.
Lemort, V.; Quoilin, S.; Cuevas, C.; et al. Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Appl. Therm. Eng. 2009, 29, 3094–3102.
- 42.
Zhu, Y.; Jiang, L.; Jin, V.; et al. Impact of built-in and actual expansion ratio difference of expander on ORC system performance. Appl. Therm. Eng. 2014, 71, 548–558.
- 43.
Kim, Y.M.; Shin, D.G.; Kim, C.G. Optimization of design pressure ratio of positive displacement expander for vehicle engine waste heat recovery. Energies 2014, 7, 6105–6117.
- 44.
Tassou, S.A.; Qureshi, T.Q. Comparative performance evaluation of positive displacement compressors in variable-speed refrigeration applications. Int. J. Refrig. 1998, 21, 29–41.
- 45.
Wang, Z.; Wang, Z.; Wang, J.; et al. Theoretical and experimental study on thermodynamic performance of single screw refrigeration compressor with Multicolumn Envelope Meshing Pair. Appl. Therm. Eng. 2016, 103, 139–149.
- 46.
Lecompte, S.; Huisseune, H.; Van Den Broek, M.; et al. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew. Sustain. Energy Rev. 2015, 47, 448–461.
- 47.
Qiu, G.; Liu, H.; Riffat, S. Expanders for micro-CHP systems with organic Rankine cycle. Appl. Therm. Eng. 2011, 31, 3301–3307.
- 48.
Capata, R.; Pantano, F. Expander design procedures and selection criterion for small rated organic rankine cycle systems. Energy Sci. Eng. 2020, 8, 3380–3414.
- 49.
Declaye, S.; Quoilin, S.; Guillaume, L.; et al. Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid. Energy 2013, 55, 173–183.
- 50.
Ma, X.; Lv, X.; Li, C.; et al. Accurate modelling of the scroll expander via a mechanism-incorporated data-driven method. Int. J. Refrig. 2023, 155, 32–46.
- 51.
Yanagisawa, T.; Shimizu, T.; Fukuta, M.; et al. Study on fundamental performance of scroll expander. Trans. Jpn. Soc. Mech. Eng. Ser. B 1988, 54, 2798–2803.
- 52.
Hsieh, J.C.; Chen, Y.H.; Hsieh, Y.C. Experimental study of an organic Rankine cycle with a variable-rotational-speed scroll expander at various heat source temperatures. Energy 2023, 270, 126956.
- 53.
Hsieh, J.C.; Hsieh, Y.C.; Chen, Y.H. Effect of superheat degree on the performance of an organic Rankine cycle system that utilizes a wet working fluid. Energy Sci. Eng. 2024, 12, 5019–5030.
- 54.
Wu, Z.; Pan, D.; Gao, N.; et al. Experimental testing and numerical simulation of scroll expander in a small scale organic Rankine cycle system. Appl. Therm. Eng. 2015, 87, 529–537.
- 55.
Fukuta, M.; Yanagisawa, T.; Kosuda, O.; Ogi, Y. Performance of Scroll Expander for CO₂ Refrigeration Cycle. In Proceedings of the International Compressor Engineering Conference, Purdue University, West Lafayette, IN, USA, 17–20 July 2006; Purdue University Press: West Lafayette, IN, USA, 2006.
- 56.
Gao, P.; Jiang, L.; Wang, L.W.; et al. Simulation and experiments on an ORC system with different scroll expanders based on energy and exergy analysis. Appl. Therm. Eng. 2015, 75, 880–888.
- 57.
Kosmadakis, G.; Mousmoulis, G.; Manolakos, D.; et al. Development of open-drive scroll expander for an Organic Rankine Cycle (ORC) engine and first test results. Energy Procedia 2017, 129, 371–378.
- 58.
Cambi, M.; Tascioni, R.; Cioccolanti, L.; et al. Converting a commercial scroll compressor into an expander: Experimental and analytical performance evaluation. Energy Procedia 2017, 129, 363–370.
- 59.
Giuffrida, A. A theoretical study on the performance of a scroll expander in an organic Rankine cycle with hydrofluoroolefins (HFOs) in place of R245fa. Energy 2018, 161, 1172–1180.
- 60.
Yang, J.; Sun, Z.; Yu, B.; et al. Modeling and optimization criteria of scroll expander integrated into organic Rankine cycle for comparison of R1233zd (E) as an alternative to R245fa. Appl. Therm. Eng. 2018, 141, 386–393.
- 61.
Dumont, O.; Parthoens, A.; Dickes, R.; et al. Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system. Energy 2018, 165, 1119–1127.
- 62.
Ziviani, D.; James, N.A.; Accorsi, F.A.; et al. Experimental and numerical analyses of a 5 kWe oil-free open-drive scroll expander for small-scale organic Rankine cycle (ORC) applications. Appl. Energy 2018, 230, 1140–1156.
- 63.
Fatigati, F.; Cipollone, R. Experimental and theoretical assessment of the effects of electrical load variation on the operability of a small-scale Organic Rankine Cycle (ORC)-based unit equipped with a hermetic scroll expander. Energy 2024, 311, 133318.
- 64.
Hijriawan, M.; Pambudi, N.A.; Wijayanto, D.S.; et al. Experimental analysis of R134a working fluid on Organic Rankine Cycle (ORC) systems with scroll-expander. Eng. Sci. Technol. Int. J. 2022, 29, 101036.
- 65.
Wang, Z.; Pan, H.; Xia, X.; et al. Experimental investigation on steady and dynamic performance of organic Rankine cycle with R245fa/R141b under different cooling and expander speed conditions. Energy 2022, 241, 122511.
- 66.
Zhang, H.H.; Zhang, Y.F.; Feng, Y.Q.; et al. The parametric analysis on the system behaviors with scroll expanders employed in the ORC system: An experimental comparison. Energy 2023, 268, 126713.
- 67.
Feng, Y.Q.; Liang, H.J.; Xu, K.; et al. Experimental study on the performance of a great progress 10 kW organic Rankine cycle for low-grade heat source based on scroll-type expander. Energy 2023, 284, 128627.
- 68.
Zhen, K.; Shi, L.; Zhang, Y.; et al. Performance prediction and regression analysis of scroll expander based on response surface methodology. Case Stud. Therm. Eng. 2024, 60, 104766.
- 69.
Wronski, J.; Imran, M.; Skovrup, M.J.; et al. Experimental and numerical analysis of a reciprocating piston expander with variable valve timing for small-scale organic Rankine cycle power systems. Appl. Energy 2019, 247, 403–416.
- 70.
Oudkerk, J.F.; Lemort, V. Detailed experimental and model-based analysis of a swash-plate piston expander for ORC application. Front. Energy Res. 2020, 8, 107.
- 71.
Zheng, N.; Zhao, L.; Wang, X.D.; et al. Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle. Appl. Energy 2013, 112, 1265–1274.
- 72.
Han, Y.; Kang, J.; Zhang, G.; et al. Performance evaluation of free piston compressor coupling organic Rankine cycle under different operatinSg conditions. Energy Convers. Manag. 2014, 86, 340–348.
- 73.
Chatzopoulou, M.A.; Simpson, M.; Sapin, P.; et al. Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications. Appl. Energy 2019, 238, 1211–1236.
- 74.
Bianchi, M.; Branchini, L.; Casari, N.; et al. Experimental analysis of a micro-ORC driven by piston expander for low-grade heat recovery. Appl. Therm. Eng. 2019, 148, 1278–1291.
- 75.
Bianchi, M.; Branchini, L.; De Pascale, A.; et al. Application and comparison of semi-empirical models for performance prediction of a kW-size reciprocating piston expander. Appl. Energy 2019, 249, 143–156.
- 76.
Bianchi, M.; Branchini, L.; De Pascale, A.; et al. Replacement of R134a with low-GWP fluids in a kW-size reciprocating piston expander: Performance prediction and design optimization. Energy 2020, 206, 118174.
- 77.
Han, Y.; Zhang, Y.; Zuo, T.; et al. Experimental study and energy loss analysis of an R245fa organic Rankine cycle prototype system with a radial piston expander. Appl. Therm. Eng. 2020, 169, 114939.
- 78.
Gao, J.; Ma, C.; Tian, G.; et al. Numerical investigations of an opposed rotary piston expander for the purpose of the applications to a small-scale Rankine cycle. Appl. Therm. Eng. 2021, 182, 116157.
- 79.
Wei, J.; Hua, Q.; Wang, J.; et al. Overview of the Development and Application of the Twin Screw Expander. Energies 2020, 13, 6586.
- 80.
Ziviani, D.; Bell, I.; van den Broek, M.; De Paepe, M. Comprehensive Model of a Single-Screw Expander for ORC-Systems. In Proceedings of the International Compressor Engineering Conference, Purdue University, West Lafayette, IN, USA, 14–17 July 2014; Purdue University Press: West Lafayette, IN, USA, 2014.
- 81.
Tian, Y.; Wang, Z.; Liu, Z.; et al. Two-phase Flow Characteristics and Leakage in the Shaft Seal of Steam Screw Expanders. Int. J. Refrig. 2025, 172, 214–227.
- 82.
Tang, H.; Wu, H.; Wang, X.; et al. Performance study of a twin-screw expander used in a geothermal organic Rankine cycle power generator. Energy 2015, 90, 631–642.
- 83.
Lei, B.; Wang, W.; Wu, Y.T.; et al. Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle. Energy 2016, 116, 43–52.
- 84.
Giuffrida, A. Improving the semi-empirical modelling of a single-screw expander for small organic Rankine cycles. Appl. Energy 2017, 193, 356–368.
- 85.
Xia, G.D.; Zhang, Y.Q.; Wu, Y.T.; et al. Experimental study on the performance of single-screw expander with different inlet vapor dryness. Appl. Therm. Eng. 2015, 87, 34–40.
- 86.
Ziviani, D.; Groll, E.A.; Braun, J.E.; et al. Review and update on the geometry modeling of single-screw machines with emphasis on expanders. Int. J. Refrig. 2018, 92, 10–26.
- 87.
Bianchi, G.; Kennedy, S.; Zaher, O.; et al. Numerical modeling of a two-phase twin-screw expander for Trilateral Flash Cycle applications. Int. J. Refrig. 2018, 88, 248–259.
- 88.
Song, X.; Wu, Y.; Shen, L.; et al. Comparative experimental analysis of the effect of lubricant viscosity on the performance of a single-screw expander with different structures. J. Energy Storage 2022, 52, 104958.
- 89.
Yang, K.; Zhang, H.; Song, S.; et al. Performance analysis of the vehicle diesel engine-ORC combined system based on a screw expander. Energies 2014, 7, 3400–3419.
- 90.
Zhang, Y.Q.; Wu, Y.T.; Xia, G.D.; et al. Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine. Energy 2014, 77, 499–508.
- 91.
Hsu, S.W.; Chiang HW, D.; Yen, C.W. Experimental investigation of the performance of a hermetic screw-expander organic Rankine cycle. Energies 2014, 7, 6172–6185.
- 92.
Ziviani, D.; Gusev, S.; Lecompte, S.; et al. Characterizing the performance of a single-screw expander in a small-scale organic Rankine cycle for waste heat recovery. Appl. Energy 2016, 181, 155–170.
- 93.
Ziviani, D.; Gusev, S.; Lecompte, S.; et al. Optimizing the performance of small-scale organic Rankine cycle that utilizes a single-screw expander. Appl. Energy 2017, 189, 416–432.
- 94.
Nikolov, A.; Brümmer, A. Investigating a small oil-flooded twin-screw expander for waste-heat utilisation in organic rankine cycle systems. Energies 2017, 10, 869.
- 95.
Eyerer, S.; Dawo, F.; Rieger, F.; et al. Experimental and numerical investigation of direct liquid injection into an ORC twin-screw expander. Energy 2019, 178, 867–878.
- 96.
Guo, Z.; Zhang, C.; Wu, Y.; et al. Numerical optimization of intake and exhaust structure and experimental verification on single-screw expander for small-scale ORC applications. Energy 2020, 199, 117478.
- 97.
Zhao, Z.; Zhang, J.; Wang, G.; et al. Research and clearance analysis on of steam twin-screw expander employed in indutrial waste heat recovery. Energy 2024, 312, 133439.
- 98.
Wang, H.X.; Lei, B.; Wu, Y.T.; et al. Experimental investigation and machine learning applications of a quasi-two-stage single screw expander integrated into an Organic Rankine Cycle. Appl. Therm. Eng. 2025, 268, 125896.
- 99.
Vodicka, V.; Novotny, V.; Zeleny, Z.; et al. Theoretical and experimental investigations on the radial and axial leakages within a rotary vane expander. Energy 2019, 189, 116097.
- 100.
Naseri, A.; Norris, S.; Subiantoro, A. Experimental investigation of a prototype semi-dry revolving vane expander: Design challenges and performance criteria. Energy 2020, 205, 118063.
- 101.
Vodicka, V.; Novotny, V.; Mascuch, J.; et al. Impact of major leakages on characteristics of a rotary vane expander for ORC. Energy Procedia 2017, 129, 387–394.
- 102.
Yang, B.; Sun, S.; Peng, X.; Guo, B.; Xing, Z. Modeling and Experimental Investigation on the Internal Leakage in a CO₂ Rotary Vane Expander. In Proceedings of the International Compressor Engineering Conference, Purdue University, West Lafayette, IN, USA, 14–17 July 2008; Purdue University Press: West Lafayette, IN, USA, 2008.
- 103.
Naseri, A.; Norris, S.E.; Subiantoro, A. Experimental investigation of leakage in the modified revolving vane expander. J. Fluids Eng. 2021, 143, 071206.
- 104.
Mahmoud, A.M.; Sherif, S.A.; Lear, W.E. Frictional and internal leakage losses in rotary-vane two-phase refrigerating expanders. J. Energy Resour. Technol. 2010, 132, 021007.
- 105.
Jia, X.; Zhang, B.; Pu, L.; et al. Improved rotary vane expander for trans-critical CO2 cycle by introducing high-pressure gas into the vane slots. Int. J. Refrig. 2011, 34, 732–741.
- 106.
Yang, B.; Peng, X.; He, Z.; et al. Experimental investigation on the internal working process of a CO2 rotary vane expander. Appl. Therm. Eng. 2009, 29, 2289–2296.
- 107.
Casari, N.; Fadiga, E.; Pinelli, M.; et al. Investigation of flow characteristics in a single screw expander: A numerical approach. Energy 2020, 213, 118730.
- 108.
Mascuch, J.; Novotny, V.; Vodicka, V.; et al. Experimental development of a kilowatt-scale biomass fired micro–CHP unit based on ORC with rotary vane expander. Renew. Energy 2020, 147, 2882–2895.
- 109.
Naseri, A.; Moradi, R.; Norris, S.; et al. Experimental investigation of a revolving vane expander in a micro-scale organic Rankine cycle system for low-grade waste heat recovery. Energy 2022, 253, 124174.
- 110.
Fatigati, F.; Vittorini, D.; Di Bartolomeo, M.; et al. Experimental and theoretical analysis of a micro-cogenerative solar ORC-based unit equipped with a variable speed sliding rotary vane expander. Energy Convers. Manag. X 2023, 20, 100428.
- 111.
Vittorini, D.; Antonini, A.; Cipollone, R.; et al. Solar thermal-based orc power plant for micro cogeneration–performance analysis and control strategy. Energy Procedia 2018, 148, 774–781.
- 112.
Fu, B.R.; Lee, Y.R.; Hsieh, J.C. Design, construction, and preliminary results of a 250-kW organic Rankine cycle system. Appl. Therm. Eng. 2015, 80, 339–346.
- 113.
Chang, J.C.; Hung, T.C.; He, Y.L.; et al. Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander. Appl. Energy 2015, 155, 150–159.
- 114.
Jiang, Y.; Feng, Y.; Tian, S.; et al. Experimental and numerical optimization of a scroll expander for small-scale ORC systems using pure and mixture working fluids. Energy 2025, 333, 137333.