- 1.
Kim, S.J.; We, J.H.; Cho, B.J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 2014, 7, 1959–1965.
- 2.
Yang, T.; Pan, H.; Tian, G.; et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 2020, 72, 104706.
- 3.
Park, S.H.; Jo, S.; Kwon, B.; et al. High-performance shape-engineerable thermoelectric painting. Nat. Commun. 2016, 7, 13403.
- 4.
Khatib, M.; Zohar, O.; Saliba, W.; et al. Highly Efficient and Water-Insensitive Self-Healing Elastomer for Wet and Underwater Electronics. Adv. Funct. Mater. 2020, 30, 1910196.
- 5.
Liu, C.; Yin, X.; Chen, Z.; et al. Improving the thermoelectric performance of solution-processed polymer nanocomposites by introducing platinum acetylides with tailored intermolecular interactions. Chem. Eng. J. 2021, 419, 129624.
- 6.
Mamur, H.; Dilmaç, Ö.F.; Begum, J.; et al. Thermoelectric generators act as renewable energy sources. Clean. Mater. 2021, 2, 100030.
- 7.
Liu, K.; Ouyang, B.; Guo, X.; et al. Advances in flexible organic field-effect transistors and their applications for flexible electronics. NPJ Flex. Electron. 2022, 6, 1.
- 8.
Lee, B.; Cho, H.; Park, K.T.; et al. High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat. Commun. 2020, 11, 5948.
- 9.
Wang, Z.; Gao, Q.; Wang, W.; et al. High performance Ag2Se/Ag/PEDOT composite films for wearable thermoelectric power generators. Mater. Today Phys. 2021, 21, 100553.
- 10.
Cao, T.; Shi, X.-L.; Li, M.; et al. Advances in bismuth-telluride-based thermoelectric devices: Progress and challenges. eScience 2023, 3, 100122.
- 11.
Park, K.T.; Cho, Y.S.; Jeong, I.; et al. Highly Integrated, Wearable Carbon-Nanotube-Yarn-Based Thermoelectric Generators Achieved by Selective Inkjet-Printed Chemical Doping. Adv. Energy Mater. 2022, 12, 2200256.
- 12.
Li, Y.; Zhang, H.; Chang, J.; et al. Solvent-Free MXene/Poly(ionic liquid) Composite Elastomers with Simultaneously Improved Mechanical and Electrical Properties for Sensing and Photothermal Applications. Nano Lett. 2025, 25, 9976–9984.
- 13.
Zadan, M.; Malakooti, M.H.; Majidi, C. Soft and Stretchable Thermoelectric Generators Enabled by Liquid Metal Elastomer Composites. ACS Appl. Mater. Interfaces 2020, 12, 17921–17928.
- 14.
Sun, X.; Hou, Y.; Zhu, Z.; et al. Modular assembly of self-healing flexible thermoelectric devices with integrated cooling and heating capabilities. Nat. Commun. 2025, 16, 4220.
- 15.
Padmanabhan Ramesh, V.; Sargolzaeiaval, Y.; Neumann, T.; et al. Flexible thermoelectric generator with liquid metal interconnects and low thermal conductivity silicone filler. NPJ Flex. Electron. 2021, 5, 5.
- 16.
Gobpant, J.; Klongratog, B.; Rudradawong, C.; et al. High-performance flexible thermoelectric generator based on silicone rubber and cover with graphite sheet. Appl. Therm. Eng. 2024, 236, 121656.
- 17.
Panbude, A.; Veluswamy, P. Silicone Elastomer: Encapsulating Materials for Flexible Thermoelectric Generator. IEEE Sens. J. 2023, 23, 16608–16615.
- 18.
Ding, W.; Shen, X.; Jin, M.; et al. Robust bendable thermoelectric generators enabled by elasticity strengthening. Nat. Commun. 2024, 15, 9767.
- 19.
Li, Y.; Zeng, J.; Zhao, Y.; et al. Fabric-based flexible thermoelectric generators: Design methods and prospects. Front. Mater. 2022, 9, 1046883.
- 20.
Zhu, S.; Fan, Z.; Feng, B.; et al. Review on Wearable Thermoelectric Generators: From Devices to Applications. Energies 2022, 15, 3375.
- 21.
Du, Y.; Xu, J.; Paul, B.; et al. Flexible thermoelectric materials and devices. Appl. Mater. Today 2018, 12, 366–388.
- 22.
Zhang, L.; Shi, X.-L.; Yang, Y.-L.; et al. Flexible thermoelectric materials and devices: From materials to applications. Mater. Today 2021, 46, 62–108.
- 23.
Xia, T.; Wemyss, A.M.; Salehiyan, R.; et al. Effective and Fast-Screening Route to Evaluate Dynamic Elastomer-Filler Network Reversibility for Sustainable Rubber Composite Design. ACS Sustain. Chem. Eng. 2023, 11, 17857–17869.
- 24.
Masoumi, S.; O’Shaughnessy, S.; Pakdel, A. Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy 2022, 92, 106774.
- 25.
Gokhale, P.; Loganathan, B.; Crowe, J.; et al. Development of Flexible Thermoelectric Cells and Performance Investigation of Thermoelectric Materials for Power Generation. Energy Procedia 2017, 110, 281–285.
- 26.
Gong, S.; Schwalb, W.; Wang, Y.; et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.
- 27.
Kang, Y.H.; Bae, E.J.; Lee, M.H.; et al. Highly Flexible and Durable Thermoelectric Power Generator Using CNT/PDMS Foam by Rapid Solvent Evaporation. Small 2022, 18, e2106108.
- 28.
Liu, Z.; Chen, G. Advancing Flexible Thermoelectric Devices with Polymer Composites. Adv. Mater. Technol. 2020, 5, 2000049.
- 29.
Choi, J.; Jung, Y.; Dun, C.; et al. High-Performance, Wearable Thermoelectric Generator Based on a Highly Aligned Carbon Nanotube Sheet. ACS Appl. Energy Mater. 2020, 3, 1199–1206.
- 30.
Cui, X.; Ruan, Q.; Zhuo, X.; et al. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem. Rev. 2023, 123, 6891–6952.
- 31.
Xu, Y.; Wu, B.; Hou, C.; et al. Reconfigurable flexible thermoelectric generators based on all-inorganic MXene/Bi2Te3 composite films. FlexMat 2024, 1, 248–257.
- 32.
Dong, X.; Xiong, S.; Luo, B.; et al. Flexible and Transparent Organic-Inorganic Hybrid Thermoelectric Modules. ACS Appl. Mater. Interfaces 2018, 10, 26687–26693.
- 33.
Ren, W.; Sun, Y.; Zhao, D.; et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci. Adv. 2021, 7, eabe0586.
- 34.
Huo, B.; Guo, C.-Y. Advances in Thermoelectric Composites Consisting of Conductive Polymers and Fillers with Different Architectures. Molecules 2022, 27, 6932.
- 35.
Wang, Y.; Yang, L.; Shi, X.L.; et al. Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Adv. Mater. 2019, 31, e1807916.
- 36.
Nathan, A.; Ahnood, A.; Cole, M.T.; et al. Flexible Electronics: The Next Ubiquitous Platform. Proc. IEEE 2012, 100, 1486–1517.
- 37.
Chen, J.; Zheng, J.; Gao, Q.; et al. Polydimethylsiloxane (PDMS)-Based Flexible Resistive Strain Sensors for Wearable Applications. Appl. Sci. 2018, 8, 345.
- 38.
He, X.; Shi, J.; Yunna, H.; et al. Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing. Carbon Energy 2022, 4, 621–632.
- 39.
Liu, J.; Liu, Q.; Shuping, L.; et al. Wearable Thermoelectric Generators: Materials, Structures, Fabrications, and Applications. Rapid Res. Lett. 2023, 17, 2200502.
- 40.
Won, D.; Bang, J.; Choi, S.H.; et al. Transparent Electronics for Wearable Electronics Application. Chem. Rev. 2023, 123, 9982–10078.
- 41.
Wu, Q.; Hu, J. Waterborne polyurethane based thermoelectric composites and their application potential in wearable thermoelectric textiles. Compos. Part B Eng. 2016, 107, 59–66.
- 42.
Cao, Z.; Koukharenko, E.; Tudor, M.J.; et al. Flexible screen printed thermoelectric generator with enhanced processes and materials. Sens. Actuators A Phys. 2016, 238, 196–206.
- 43.
Jian, Z.; Wang, H.; Liu, M.; et al. Polyurethane-modified graphene oxide composite bilayer wound dressing with long-lasting antibacterial effect. Mater. Sci. Eng. C 2020, 111, 110833.
- 44.
Lavazza, J.; Contino, M.; Marano, C. Strain rate, temperature and deformation state effect on Ecoflex 00-50 silicone mechanical behaviour. Mech. Mater. 2023, 178, 104560.
- 45.
Patil, N.A.; Joshi, K.; Lee, J.; et al. Additive manufacturing of thermoplastic elastomer structures using dual material core-shell filaments. Addit. Manuf. 2024, 82, 104044.
- 46.
He, H.; Ouyang, J. Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT: PSS for flexible electronics applications. Acc. Mater. Res. 2020, 1, 146–157.
- 47.
Chang, Y.; Huang, Y.-H.; Lin, P.-S.; et al. Enhanced Electrical Conductivity and Mechanical Properties of Stretchable Thermoelectric Generators Formed by Doped Semiconducting Polymer/Elastomer Blends. ACS Appl. Mater. Interfaces 2024, 16, 3764–3777.
- 48.
Jeong, Y.J.; Jung, J.; Suh, E.H.; et al. Self-healable and stretchable organic thermoelectric materials: Electrically percolated polymer nanowires embedded in thermoplastic elastomer matrix. Adv. Funct. Mater. 2020, 30, 1905809.
- 49.
Yang, S.; Qiu, P.; Chen, L.; et al. Recent developments in flexible thermoelectric devices. Small Sci. 2021, 1, 2100005.
- 50.
Tzounis, L.; Petousis, M.; Grammatikos, S.; et al. 3D printed thermoelectric polyurethane/multiwalled carbon nanotube nanocomposites: A novel approach towards the fabrication of flexible and stretchable organic thermoelectrics. Materials 2020, 13, 2879.
- 51.
Guo, R.; Shi, W.; Guo, R.; et al. A Novel PDMS-Based Flexible Thermoelectric Generator Fabricated by Ag2Se and PEDOT:PSS/Multi-Walled Carbon Nanotubes with High Output Performance Optimized by Embedded Eutectic Gallium–Indium Electrodes. Nanomaterials 2024, 14, 542.
- 52.
Wang, S.; Han, L.; Liu, H.; et al. Ionic Gelatin-Based Flexible Thermoelectric Generator with Scalability for Human Body Heat Harvesting. Energies 2022, 15, 3441.
- 53.
He, M.; Lin, Y.-J.; Chiu, C.-M.; et al. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy 2018, 49, 588–595.
- 54.
Yu, Z.-D.; Lu, Y.; Wang, Z.-Y.; et al. High n-type and p-type conductivities and power factors achieved in a single conjugated polymer. Sci. Adv. 2023, 9, eadf3495.
- 55.
Zhang, C.; Huang, H.; Han, S.; et al. Layer-by-Layer flexible organic thermoelectric devices based on PEDOT: PSS and PBFDO Energy Material Advances 2024, 5, 0104.
- 56.
Kim, J.H.; Hwang, J.-Y.; Hwang, H.R.; et al. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics. Sci. Rep. 2018, 8, 1375.
- 57.
Wei, Y.; Zhou, H.; Deng, H.; et al. “Toolbox” for the Processing of Functional Polymer Composites. Nano-Micro Lett. 2021, 14, 35.
- 58.
Park, S.J.; Cho, K.S. Filler-elastomer interactions: Influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites. J. Colloid Interface Sci. 2003, 267, 86–91.
- 59.
Kim, S.-U.; Kim, J.-Y. Dynamic Statistical Mechanics Modeling of Percolation Networks in Conductive Polymer Composites for Smart Sensor Applications. Materials 2025, 18, 3097.
- 60.
Bai, X.; Zhang, C.; Zeng, X.; et al. Recent progress in thermally conductive polymer/boron nitride composites by constructing three-dimensional networks. Compos. Commun. 2021, 24, 100650.
- 61.
Saglik, K.; Yahyaoglu, M.; Candolfi, C.; et al. Enhancing Thermoelectric and Mechanical Properties of p-Type (Bi, Sb)2Te3 through Rickardite Mineral (Cu2.9Te2) Incorporation. Chem. Mater. 2023, 35, 3603–3613.
- 62.
Aboughaly, M.; Babaei-Ghazvini, A.; Dhar, P.; et al. Enhancing the Potential of Polymer Composites Using Biochar as a Filler: A Review. Polymers 2023, 15, 3981.
- 63.
Choi, H.; Kim, Y.J.; Kim, C.S.; et al. Enhancement of reproducibility and reliability in a high-performance flexible thermoelectric generator using screen-printed materials. Nano Energy 2018, 46, 39–44.
- 64.
Yang, Y.; Dias, M.A.; Holmes, D.P. Multistable kirigami for tunable architected materials. Phys. Rev. Mater. 2018, 2, 110601.
- 65.
Song, J.; Park, K.; Kim, Y.; et al. Self-Healing Stretchable Thermoelectric Polymer Composite with Bismuth Antimony Telluride and Single-Walled Carbon Nanotubes for Thermoreceptor-Inspired Modular Systems. ACS Appl. Mater. Interfaces 2025, 17, 36922–36933.
- 66.
Claumarchirant, J.F.; Nasiri, M.A.; Cho, C.; et al. Textile-based Thermoelectric Generator Produced Via Electrochemical Polymerization. Adv. Mater. Interfaces 2023, 10, 2202105.
- 67.
Lin, Z.; Li, T.; Yang, S.; et al. Revolutionizing flexible electronics with liquid metal innovations. Device. 2024, 2, 100331.
- 68.
Shukla, D.; Wang, H.; Awartani, O.; et al. Surface Embedded Metal Nanowire-Liquid Metal-Elastomer Hybrid Composites for Stretchable Electronics. ACS Appl. Mater. Interfaces 2024, 16, 14183–14197.
- 69.
Zhang, P.; Deng, B.; Sun, W.; et al. Fiber-Based Thermoelectric Materials and Devices for Wearable Electronics. Micromachines 2021, 12, 869.
- 70.
Chen, S.; Wu, Z.; Chu, C.; et al. Biodegradable Elastomers and Gels for Elastic Electronics. Adv. Sci. 2022, 9, e2105146.
- 71.
Song, Y.; Zeng, W.; Rong, M.; et al. Flexible thermoelectric composite materials with self-healing ability for harvesting low-grade thermal energy. Compos. Sci. Technol. 2023, 242, 110179.
- 72.
Kim, M.J.; Hwang, M.; Kim, J.-H.; et al. Biodegradable and Elastomeric Poly(glycerol sebacate) as a Coating Material for Nitinol Bare Stent. BioMed Res. Int. 2014, 2014, 956952.
- 73.
Ali, Z.; Yaqoob, S.; Yu, J.; et al. Unveiling the Influential Factors and Heavy Industrial Applications of Graphene Hybrid Polymer Composites. J. Compos. Sci. 2024, 8, 183.
- 74.
Liu, Y.; Wang, X.; Hou, S.; et al. Scalable-produced 3D elastic thermoelectric network for body heat harvesting. Nat. Commun. 2023, 14, 3058.
- 75.
Shahil, K.M.F.; Balandin, A.A. Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials. Nano Lett. 2012, 12, 861–867.
- 76.
Wu, Y.; An, C.; Guo, Y.; et al. Highly Aligned Graphene Aerogels for Multifunctional Composites. Nano-Micro Lett. 2024, 16, 118.
- 77.
Zadan, M.; Patel, D.; Sabelhaus, A.; et al. Liquid Crystal Elastomer with Integrated Soft Thermoelectrics for Shape Memory Actuation and Energy Harvesting. Adv. Mater. 2022, 34, 2200857.
- 78.
Park, T.H.; Kim, B.; Yu, S.; et al. Ionoelastomer electrolytes for stretchable ionic thermoelectric supercapacitors. Nano Energy 2023, 114, 108643.
- 79.
Feng, C.; Hemantha Rajapaksha, C.P.; Jákli, A. Ionic Elastomers for Electric Actuators and Sensors. Engineering 2021, 7, 581–602.
- 80.
Li, P.; Zhao, Y.; Li, H.; et al. Facile green strategy for improving thermoelectric performance of carbon nanotube/polyaniline composites by ethanol treatment. Compos. Sci. Technol. 2020, 189, 108023.
- 81.
Xie, F. Natural polymer starch-based materials for flexible electronic sensor development: A review of recent progress. Carbohydr. Polym. 2024, 337, 122116.
- 82.
Jeong, M.; Bae, E.; Park, B.; et al. High-performance and flexible thermoelectric generator based on a robust carbon nanotube/BiSbTe foam. Carbon Energy 2024, 7, e650.
- 83.
Lv, H.; Liang, L.; Zhang, Y.; et al. A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting. Nano Energy 2021, 88, 106260.
- 84.
Wang, H.; Lee, J.; Kim, J.H.; et al. Revealing the origin of the thermal conductivity improvement of the silane@polydopamine modified graphene/epoxy nanocomposites: A multiscale study. Compos. Sci. Technol. 2025, 261, 111009.
- 85.
Romero-Gilbert, S.; Castro-García, M.; Díaz-Chamorro, H.; et al. Synthesis, Characterization and Catechol-Based Bioinspired Adhesive Properties in Wet Medium of Poly(2-Hydroxyethyl Methacrylate-co-Acrylamide) Hydrogels. Polymers 2024, 16, 187.
- 86.
Chen, X.; Sun, P.; Tian, H.; et al. Self-healing and stretchable conductor based on embedded liquid metal patterns within imprintable dynamic covalent elastomer. J. Mater. Chem. C 2021, 10, 1039–1047.
- 87.
Sargolzaeiaval, Y.; Padmanabhan Ramesh, V.; Neumann, T.; et al. Flexible thermoelectric generators for body heat harvesting–Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects. Appl. Energy 2020, 262, 114370.
- 88.
Liang, L.; Liu, X.; Li, P.; et al. A wearable multimodal health monitoring bracelet powered by high-power-density flexible thermoelectric generators. Device 2025, 3, 100748.
- 89.
Liu, T.; Xie, L.; Zeng, J.; et al. Interfacial Superassembly of Light-Responsive Mechanism-Switchable Nanomotors with Tunable Mobility and Directionality. ACS Appl. Mater. Interfaces 2022, 14, 15517–15528.
- 90.
Tuyen, N.T.; Kim, D.M.; Lee, J.-W.; et al. Innovative Hybrid Nanocomposites in 3D Printing for Functional Applications: A Review. Molecules 2024, 29, 5159.
- 91.
Jamil, U.; Holden, N.M. Systematic review of life cycle assessment of thermoelectric materials and devices to identify knowledge gaps and sustainability perspectives. Environ. Impact Assess. Rev. 2025, 115, 108060.
- 92.
Tang, Q.; Jiang, B.; Wang, K.; et al. High-entropy thermoelectric materials. Joule 2024, 8, 1641–1666.
- 93.
Liu, J.; Wu, S.; Zhang, L.; et al. Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement. Phys. Chem. Chem. Phys. 2011, 13, 518–529.
- 94.
Tan, P.; Wang, H.; Xiao, F.; et al. Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 2022, 13, 358.
- 95.
Min, H.; Shuai, S.; Wanyu, L.; et al. Advances in printing techniques for thermoelectric materials and devices. Soft Sci. 2023, 3, 29.
- 96.
Lin, H.; Peng, S.; Guo, S.; et al. 2D Materials and Primary Human Dendritic Cells: A Comparative Cytotoxicity Study. Small 2022, 18, 2107652.