2512002601
  • Open Access
  • Article

Advances in Photocatalytic Hydrogen Production for a Sustainable Future

  • Thanh-Binh Nguyen

Received: 05 Aug 2025 | Revised: 20 Dec 2025 | Accepted: 23 Dec 2025 | Published: 29 Dec 2025

Abstract

The pursuit of sustainable and clean energy has highlighted hydrogen as a key alternative to traditional fossil fuels due to its high energy content and zero-emission characteristics. Among various hydrogen production methods, photocatalytic water splitting, which utilizes solar energy, emerges as a particularly promising approach for generating renewable and environmentally friendly hydrogen. This review examines recent progress in the field of photocatalysis, focusing on significant advancements in photocatalytic materials, system designs, and reactor configurations that have improved the efficiency of hydrogen production. The discussion includes traditional photocatalysts like titanium dioxide (TiO2) and explores new materials such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and perovskites, highlighting innovations in material development and surface modification. Additionally, the integration of photocatalytic systems with solar energy technologies and artificial photosynthesis is explored, showcasing progress towards scalable and cost-effective solutions. Despite these advancements, challenges such as material stability, economic feasibility, and environmental impacts persist and are critically assessed. The review concludes by outlining future research directions and opportunities, emphasizing that ongoing interdisciplinary efforts and supportive policies are crucial for overcoming current obstacles and achieving broad adoption of photocatalytic hydrogen production. This comprehensive review aims to provide a detailed understanding of the current status and potential future of photocatalytic hydrogen production as a cornerstone of sustainable energy solutions.

References 

  • 1.

    Ishaq, H.; Dincer, I.; Crawford, C. A Review on Hydrogen Production and Utilization: Challenges and Opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. https://doi.org/10.1016/j.ijhydene.2021.11.149.

  • 2.

    Chavan, G.T.; Dubal, D.P.; Cho, E.C.; et al. A Roadmap of Sustainable Hydrogen Production and Storage: Innovations and Challenges. Small 2025, 21, 2411444. https://doi.org/10.1002/smll.202411444.

  • 3.

    Nguyen, T.B.; Sherpa, K.; Chen, C.W.; et al. Breakthroughs and Prospects in Ruthenium-Based Electrocatalyst for Hydrogen Evolution Reaction. J. Alloys Compd. 2023, 968, 172020. https://doi.org/10.1016/j.jallcom.2023.172020.

  • 4.

    Soltani, S.M.; Lahiri, A.; Bahzad, H.; et al. Sorption-Enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review. Carbon Capture Sci. Technol. 2021, 1, 100003. https://doi.org/10.1016/j.ccst.2021.100003.

  • 5.

    Kumar, S.S.; Lim, H. An Overview of Water Electrolysis Technologies for Green Hydrogen Production. Energy Rep. 2022, 8, 13793–13813. https://doi.org/10.1016/j.egyr.2022.10.127.

  • 6.

    Rubinsin, N.; Karim, N.; Timmiati, S.; et al. An Overview of the Enhanced Biomass Gasification for Hydrogen Production. Int. J. Hydrogen Energy 2024, 49, 1139–1164. https://doi.org/10.1016/j.ijhydene.2023.09.043.

  • 7.

    Yang, Y.; Zhou, C.; Wang, W.; et al. Recent Advances in Application of Transition Metal Phosphides for Photocatalytic Hydrogen Production. Chem. Eng. J. 2021, 405, 126547. https://doi.org/10.1016/j.cej.2020.126547.

  • 8.

    Sharma, S.; Dutta, V.; Raizada, P.; et al. Controllable Functionalization of g-C3N4 Mediated All-Solid-State (ASS) Z-Scheme Photocatalysts towards Sustainable Energy and Environmental Applications. Environ. Technol. Innov. 2021, 24, 101972. https://doi.org/10.1016/j.eti.2021.101972.

  • 9.

    Kotp, M.; Kuo, S. Harnessing Solar Energy with Porous Organic Polymers: Advancements, Challenges, Economic, Environmental Impacts and Future Prospects in Sustainable Photocatalysis. Mater. Today Chem. 2024, 41, 102299. https://doi.org/10.1016/j.mtchem.2024.102299.

  • 10.

    Nguyen, T.B.; Huang, C.P.; Doong, R.A. Photocatalytic Degradation of Bisphenol A over a ZnFe2O4/TiO2 Nanocomposite under Visible Light. Sci. Total Environ. 2019, 646, 745–756. https://doi.org/10.1016/j.scitotenv.2018.07.352.

  • 11.

    Sun, S.; Gao, P.; Yang, Y.; et al. N-Doped TiO2 Nanobelts with Coexposed (001) and (101) Facets and Their Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 2016, 8, 18126–18131. https://doi.org/10.1021/acsami.6b05244.

  • 12.

    Mirzaeifard, Z.; Shariatinia, Z.; Jourshabani, M.; et al. ZnO Photocatalyst Revisited: Effective Photocatalytic Degradation of Emerging Contaminants Using S-Doped ZnO Nanoparticles under Visible Light Radiation. Ind. Eng. Chem. Res. 2020, 59, 15894–15911. https://doi.org/10.1021/acs.iecr.0c03192.

  • 13.

    Genc, M.T.; Sarilmaz, A.; Dogan, S.; et al. Thermally-Exfoliated Graphene Oxide/ZnO Nanocomposite Catalysts for Photocatalytic Hydrogen Evolution and Antibacterial Activities. Int. J. Hydrogen Energy 2023, 48, 30407–30419. https://doi.org/10.1016/j.ijhydene.2023.04.185.

  • 14.

    Tang, H.L.; Sun, X.J; Zhang, F.M. Development of MOF-Based Heterostructures for Photocatalytic Hydrogen Evolution. Dalton Trans. 2020, 49, 12136–12144. https://doi.org/10.1039/d0dt02309d.

  • 15.

    Zhu, C.; Tian, Q.; Wan, S.; et al. Recent Progress of NH2-MIL-125(Ti)-Based Photocatalytic System in Energy Production and Environmental Purification. Chem. Eng. J. 2024, 497, 154689. https://doi.org/10.1016/j.cej.2024.154689.

  • 16.

    Cohen, S.M. Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. Chem. Rev. 2012, 112, 970–1000. https://doi.org/10.1021/cr200179u.

  • 17.

    Ali, S.A.; Ahmad, T. Treasure Trove for Efficient Hydrogen Evolution through Water Splitting Using Diverse Perovskite Photocatalysts. Mater. Today Chem. 2023, 29, 101387. https://doi.org/10.1016/j.mtchem.2023.101387.

  • 18.

    Park, S.; Chang, W.J.; Lee, C.W.; et al. Photocatalytic Hydrogen Generation from Hydriodic Acid Using Methylammonium Lead Iodide in Dynamic Equilibrium with Aqueous Solution. Nat. Energy 2017, 2, 16185. https://doi.org/10.1038/nenergy.2016.185.

  • 19.

    Wang, Y.; Ahmad, I.; Leung, T.; et al. Encapsulation and Stability Testing of Perovskite Solar Cells for Real Life Applications. ACS Mater. Au 2022, 2, 215–236. https://doi.org/10.1021/acsmaterialsau.1c00045.

  • 20.

    Tjardts, T.; Elis, M.; Hicke, M.; et al. Critical Assessment of a TiO2-Ag-ZnO Nanocomposite Photocatalyst on Improved Photocatalytic Activity under Mixed UV-Visible Light. Appl. Surf. Sci. Adv. 2023, 18, 100500. https://doi.org/10.1016/j.apsadv.2023.100500.

  • 21.

    Khan, A.; Sadiq, S.; Khan, I.; et al. Preparation of Visible-Light Active MOFs-Perovskites (ZIF-67/LaFeO3) Nanocatalysts for Exceptional CO2 Conversion, Organic Pollutants and Antibiotics Degradation. Heliyon 2024, 10, e27378. https://doi.org/10.1016/j.heliyon.2024.e27378.

  • 22.

    Guo, Y.; Li, H.; Ma, W.; et al. Photocatalytic Activity Enhanced via Surface Hybridization. Carbon Energy 2020, 2, 308–349. https://doi.org/10.1002/cey2.66.

  • 23.

    Sathishkumar, K.; Harishsenthil, P.; Naidu, S.M.; et al. Impact of Metal Doping and Non Metal Loading on the Photocatalytic Degradation of Organic Pollutants Using Tin Dioxide Catalyst under Sunlight Irradiation. J. Mol. Struct. 2025, 1321, 139841. https://doi.org/10.1016/j.molstruc.2024.139841.

  • 24.

    Wang, Z.; Lin, Z.; Shen, S.; et al. Advances in Designing Heterojunction Photocatalytic Materials. Chin. J. Catal. 2021, 42, 710–730. https://doi.org/10.1016/S1872-2067(20)63698-1.

  • 25.

    Flores, N.; Pal, U.; Galeazzi, R.; et al. Effects of Morphology, Surface Area, and Defect Content on the Photocatalytic Dye Degradation Performance of ZnO Nanostructures. RSC Adv. 2014, 4, 41099–41110. https://doi.org/10.1039/c4ra04522j.

  • 26.

    Cai, G.; Yan, P.; Zhang, L.; et al. Metal-Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chem. Rev. 2021, 121, 12278–12326. https://doi.org/10.1021/acs.chemrev.1c00243.

  • 27.

    Kacem, K.; Casanova-Chafer, J.; Hamrouni, A.; et al. ZnO-TiO2/rGO Heterostructure for Enhanced Photodegradation of IC Dye under Natural Solar Light and Role of rGO in Surface Hydroxylation. Bull. Mater. Sci. 2023, 46, 83. https://doi.org/10.1007/s12034-023-02913-7.

  • 28.

    Wang, K.; Li, Y.; Xie, L.H; et al. Construction and Application of Base-Stable MOFs: A Critical Review. Chem. Soc. Rev. 2022, 51, 6417–6441. https://doi.org/10.1039/d1cs00891a.

  • 29.

    Ran, B.; Ran, L.; Wang, Z.; et al. Photocatalytic Antimicrobials: Principles, Design Strategies, and Applications. Chem. Rev. 2023, 123, 12371–12430. https://doi.org/10.1021/acs.chemrev.3c00326.

  • 30.

    Prakash, K.; Mishra, B.; Diaz, D.D; et al. Strategic Design of Covalent Organic Frameworks (COFs) for Photocatalytic Hydrogen Generation. J. Mater. Chem. A 2023, 11, 14489–14538. https://doi.org/10.1039/d3ta02189k.

  • 31.

    Rahman, N.; Choong, C.; Pichiah, S.; et al. Recent Advances in the TiO2 Based Photoreactors for Removing Contaminants of Emerging Concern in Water. Sep. Purif. Technol. 2023, 304, 122294. https://doi.org/10.1016/j.seppur.2022.122294.

  • 32.

    Kurnaravel, V.; Mathew, S.; Bartlett, J.; et al. Photocatalytic Hydrogen Production Using Metal Doped TiO2: A Review of Recent Advances. Appl. Catal. B 2019, 244, 1021–1064. https://doi.org/10.1016/j.apcatb.2018.11.080.

  • 33.

    Li, T.; Tsubaki, N.; Jin, Z. S-Scheme Heterojunction in Photocatalytic Hydrogen Production. J. Mater. Sci. Technol. 2024, 169, 82–104. https://doi.org/10.1016/j.jmst.2023.04.049.

  • 34.

    Lin, X.; Wang, J. Green Synthesis of Well Dispersed TiO2/Pt Nanoparticles Photocatalysts and Enhanced Photocatalytic Activity towards Hydrogen Production. Int. J. Hydrogen Energy 2019, 44, 31853–31859. https://doi.org/10.1016/j.ijhydene.2019.10.062.

  • 35.

    Fajrina, N.; Tahir, M. A Critical Review in Strategies to Improve Photocatalytic Water Splitting towards Hydrogen Production. Int. J. Hydrogen Energy 2019, 44, 540–577. https://doi.org/10.1016/j.ijhydene.2018.10.200.

  • 36.

    Wang, Q.; Domen, K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem. Rev. 2020, 120, 919–985. https://doi.org/10.1021/acs.chemrev.9b00201.

  • 37.

    Huang, C.; Yao, W.; T-Raissi, A.; et al. Development of Efficient Photoreactors for Solar Hydrogen Production. Sol. Energy 2011, 85, 19–27. https://doi.org/10.1016/j.solener.2010.11.004.

  • 38.

    Pala, L.; Peela, N. Green Hydrogen Production in an Optofluidic Planar Microreactor via Photocatalytic Water Splitting under Visible/Simulated Sunlight Irradiation. Energy Fuels 2021, 35, 19737–19747. https://doi.org/10.1021/acs.energyfuels.1c02686.

  • 39.

    Ghanimati, M.; Lashgari, M.; Montagnaro, F.; et al. A Novel Magnetic HS− Adsorptive Nanocomposite Photocatalyst (rGO/CoMn2O4-MgFe2O4) for Hydrogen Fuel Production Using H2S Feed. Mater. Adv. 2023, 4, 5252–5262. https://doi.org/10.1039/d3ma00668a.

  • 40.

    Gupta, A.; Likozar, B.; Jana, R.; et al. A Review of Hydrogen Production Processes by Photocatalytic Water Splitting—From Atomistic Catalysis Design to Optimal Reactor Engineering. Int. J. Hydrogen Energy 2022, 47, 33282–33307. https://doi.org/10.1016/j.ijhydene.2022.07.210.

  • 41.

    Song, H.; Luo, S.; Huang, H.; et al. Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives. ACS Energy Lett. 2022, 7, 1043–1065. https://doi.org/10.1021/acsenergylett.1c02591.

  • 42.

    Mani, P.; Shenoy, S.; Sagayaraj, P.; et al. Scaling Up of Photocatalytic Systems for Large-Scale Hydrogen Generation. Appl. Phys. Rev. 2025, 12, 011301. https://doi.org/10.1063/5.0223598.

  • 43.

    Sekhar, M.C.; Reddy, B.P.; Kuchi, C.; et al. Enhanced Solar-Driven Photocatalytic Hydrogen Production, Dye Degradation, and Supercapacitor Functionality Using MoS2-TiO2 Nanocomposite. Ceram. Int. 2024, 50, 38679–38687. https://doi.org/10.1016/j.ceramint.2024.07.239.

Share this article:
How to Cite
Nguyen, T.-B. Advances in Photocatalytic Hydrogen Production for a Sustainable Future. Green Energy and Fuel Research 2025, 2 (4), 314–327. https://doi.org/10.53941/gefr.2025.100022.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.