2506000849
  • Open Access
  • Opinion
The Standard Model Yesterday, Today and Tomorrow
  • Howard Georgi

Received: 05 Apr 2025 | Revised: 13 Jun 2025 | Accepted: 19 Jun 2025 | Published: 30 Jun 2025

Abstract

The 1970s was the decade of the Standard Model! This decade which began  with quantum field theory in disarray ended with a practical set of QFT tools for calcu- lations for strong interactions at high and low energies and for electroweak interactions  at all energies. After briefly remembering how we got there, I celebrate the remarkable  achievements of particle physics in the 1970s and comment on where we go from here.

References 

  • 1.
    Weinberg, S. A Model of Leptons. Phys. Rev. Lett. 1967, 19, 1264–1266. https://doi.org/10.1103/PhysRevLett.19.1264.
  • 2.
    Glashow, S.L.; Iliopoulos, J.; Maiani, L. Weak Interactions with Lepton-Hadron Symmetry. Phys. Rev. D 1970, 2, 1285–1292. https://doi.org/10.1103/PhysRevD.2.1285.
  • 3.
    Hooft, G. Renormalizable Lagrangians for massive Yang-Mills fields. Nucl. Phys. B 1971, 35, 167–188. https://doi.org/10.1016/0550-3213(71)90139-8.
  • 4.
    Hooft, G.; Veltman, M.J.G. Regularization and renormalization of gauge fields. Nucl. Phys. B 1972, 44, 189–213. https://doi.org/10.1016/0550-3213(72)90279-9.
  • 5.
    Lee, B.W.; Zinn-Justin, J. Spontaneously Broken Gauge Symmetries. I. Preliminaries. Phys. Rev. D 1972, 5, 3121–3137.https://doi.org/10.1103/PhysRevD.5.3121.
  • 6.
    Lee, B.W.; Zinn-Justin, J. Spontaneously Broken Gauge Symmetries. II. Perturbation Theory and Renormalization. Phys. Rev. D 1973, 8, 4654. https://doi.org/10.1103/PhysRevD.5.3137.
  • 7.
    Lee, B.W.; Zinn-Justin, J. Spontaneously Broken Gauge Symmetries. III. Equivalence. Phys. Rev. D 1972, 5, 3155–3160. https://doi.org/10.1103/PhysRevD.5.3155.
  • 8.
    Lee, B.W.; Zinn-Justin, J. Spontaneously Broken Gauge Symmetries. IV. General Gauge Formulation. Phys. Rev. D 1973, 7, 1049–1056. https://doi.org/10.1103/PhysRevD.7.1049.
  • 9.
    Coleman, S.R.; Weinberg, E.J. Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Phys. Rev. D 1973, 7, 1888–1910. https://doi.org/10.1103/PhysRevD.7.1888.
  • 10.
    Georgi, H.; Glashow, S.L. Unified Weak and Electromagnetic Interactions without Neutral Currents. Phys. Rev. Lett. 1972, 28, 1494. https://doi.org/10.1103/PhysRevLett.28.1494.
  • 11.
    Weinberg, S. Mixing Angle in Renormalizable Theories of Weak and Electromagnetic Interactions. Phys. Rev. D 1972, 5, 1962–1967. https://doi.org/10.1103/PhysRevD.5.1962.
  • 12.
    Georgi, H.; Glashow, S.L. Attempts to Calculate the Electron Mass. Phys. Rev. D 1973, 7, 2457–2463. https://doi.org/ 10.1103/PhysRevD.7.2457.
  • 13.
    Bouchiat, C.; Iliopoulos, J.; Meyer, P. An anomaly-free version of Weinberg’s model. Phys. Lett. B 1972, 38, 519–523. https://doi.org/10.1016/0370-2693(72)90532-1.
  • 14.
    Politzer; D, H. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 1973, 30, 1346–1349. https://doi.org/ 10.1103/PhysRevLett.30.1346.
  • 15.
    Gross, D.J.; Wilczek, F. Ultraviolet Behavior of Non-Abelian Gauge Theories. Phys. Rev. Lett. 1973, 30, 1343–1346. https://doi.org/10.1103/PhysRevLett.30.1343.
  • 16.
    Pati, J.C.; Salam, A. Lepton number as the fourth ”color”. Phys. Rev. D 1974, 10, 275–289. https://doi.org/10.1103/ PhysRevD.10.275.
  • 17.
    Weinberg, S. Non-Abelian Gauge Theories of the Strong Interactions. Phys. Rev. Lett. 1973, 31, 494–497. https://doi.org/ 10.1103/PhysRevLett.31.494.
  • 18.
    Georgi, H. The State of the Art—Gauge Theories. In Proceedings of the 1974 Meeting of the Division of Particles and Fields of the APS, Williamsburg, VA, USA, 5–7 September 1974.
  • 19.
    Georgi, H.; Glashow, S.L. Unity of All Elementary-Particle Forces. Phys. Rev. Lett. 1974, 32, 438–441. https://doi.org/10.1103/ PhysRevLett.32.438.
  • 20.
    Fritzsch, H.; Minkowski, P. Unified interactions of leptons and hadrons. Ann. Phys. 1975, 93, 193–266. https://doi.org/10.1016/ 0003-4916(75)90211-0.
  • 21.
    Georgi, H.; Quinn, H.R.; Weinberg, S. Hierarchy of Interactions in Unified Gauge Theories. Phys. Rev. Lett. 1974, 33, 451–454. https://doi.org/10.1103/PhysRevLett.33.451.
  • 22.
    Appelquist, T.; Georgi, H. e+ e- Annihilation in Gauge Theories of Strong Interactions. Phys. Rev. D 1973, 8, 4000–4002. https://doi.org/10.1103/PhysRevD.8.4000.
  • 23.
    Zee, A. Electron-Positron Annihilation in Stagnant Field Theories. Phys. Rev. D 1973, 8, 4038–4041. https://doi.org/10.1103/PhysRevD.8.4038.
  • 24.
    Aubert, J.J.; Becker, U.; Biggs, P.J.; et al. Experimental Observation of a Heavy Particle J. Phys. Rev. Lett. 1974, 33, 1404–1406. https://doi.org/10.1103/PhysRevLett.33.1404.
  • 25.
    Augustin, J.-E.; Boyarski, A.M.; Breidenbach, M.; et al. Discovery of a Narrow Resonance in e+ e- Annihilation. Phys. Rev. Lett. 1974, 33, 1406–1408. https://doi.org/10.1103/PhysRevLett.33.1406.
  • 26.
    Vafa, C. The String Landscape and the Swampland. arXiv 2005, arXiv:hep-th/0509212.
  • 27.
    Andreassen, A.; Frost, W.; Schartz, M.D. Scale-invariant instantons and the complete lifetime of the Standard Model. Phys.
  • 28.
    Rev. D 2018, 97, 056006. https://doi.org/10.1103/PhysRevD.97.056006.
Share this article:
How to Cite
Georgi, H. The Standard Model Yesterday, Today and Tomorrow. Highlights in High-Energy Physics 2025, 1 (1), 4. https://doi.org/10.53941/hihep.2025.100004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.