2506000861
  • Open Access
  • Review
The Age of Gravitational Wave Astronomy
  • Frédérique Marion 1, 2

Received: 05 Apr 2025 | Revised: 06 May 2025 | Accepted: 12 Jun 2025 | Published: 30 Jun 2025

Abstract

Detecting gravitational waves has been a very long experimental quest, which came to fruition with the second generation of the LIGO and Virgo ground-based in- terferometric detectors. These groundbreaking instruments have opened a new window on the Universe, revealing cataclysmic astrophysical events. They are spearheading a large-scale endeavor to explore the gravitational-wave spectrum at all frequencies, with rich science cases linked to fundamental physics, astrophysics, cosmology and the physics of the early Universe.

References 

  • 1.
    Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. https://doi.org/10.1103/PhysRevLett.116.061102.
  • 2.
    Weisberg, J.M.; Huang, Y. Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16. Astrophys. J. 2016, 829, 55. https://doi.org/10.3847/0004-637X/829/1/55.
  • 3.
    Aasi, J.; Abbott, B.P.; Abbott, R.; et al. Advanced LIGO. Class. Quantum Gravity 2015, 32, 074001. https://doi.org/10.1088/0264-9381/32/7/074001.
  • 4.
    Acernese, F.; Agathos, M.; Agatsuma, K.; et al. Advanced Virgo: A Second-Generation Interferometric Gravitational Wave Detector. Class. Quantum Gravity 2015, 32, 024001. https://doi.org/10.1088/0264-9381/32/2/024001.
  • 5.
    KAGRA Collaboration. KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector. Nat. Astron. 2019, 3, 35–40. https://doi.org/10.1038/s41550-018-0658-y.
  • 6.
    Abbott, B.P.; Abbott, R.; Abbott, T.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. https://doi.org/10.1103/PhysRevLett.119.161101.
  • 7.
    Abbott, R.; Abbott, T.D.; Abraham, S.; et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 MΘ. Phys. Rev. Lett. 2020, 125, 101102. https://doi.org/10.1103/PhysRevLett.125.101102.
  • 8.
    Abbott, R.; Abbott, T.D.; Acernese, F.; et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run. Phys. Rev. X 2023, 13, 041039. https://doi.org/10.1103/PhysRevX.13.041039.
  • 9.
    Arzoumanian, Z.; Baker, P.T.; Blumer, H.; et al. The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys. J. Lett. 2020, 905, L34. https://doi.org/10.3847/2041-8213/abd401.
  • 10.
    Goncharov, B.; Shannon, R.M.; Reardon, D.J.; et al. On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitationalwave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 2021, 917, L19. https://doi.org/10.3847/2041-8213/ac17f4.
  • 11.
    Chen, S.; Caballero, R.N.; Guo, Y.J.; et al. Common-red-signal Analysis with 24-yr High-precision Timing of the European Pulsar Timing Array: Inferences in the Stochastic Gravitational-wave Background Search. Mon. Not. R. Astron. Soc. 2021, 508, 4970–4993. https://doi.org/10.1093/mnras/stab2833.
  • 12.
    Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; et al. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. https://doi.org/10.3847/2041-8213/acdac6.
  • 13.
    Colpi, M.; Danzmann, K.; Hewitson, M.; et al. LISA Definition Study Report. arXiv 2024, arXiv:2402.07571.
Share this article:
How to Cite
Marion, F. The Age of Gravitational Wave Astronomy. Highlights in High-Energy Physics 2025, 1 (1), 10. https://doi.org/10.53941/hihep.2025.100010.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.