2506000863
  • Open Access
  • Review
About BSM Physics, with Emphasis on Flavour
  • Riccardo Barbieri

Received: 05 Apr 2025 | Revised: 12 Jun 2025 | Accepted: 19 Jun 2025 | Published: 30 Jun 2025

Abstract

This article is an account of a talk given at the Conference The rise of Particle Physics celebrating the 50th anniversary of the J/Ψ discovery. It contains some reflections on BSM physics and flavour in particular.

References 

  • 1.
    Aubert, J.J.; Becker, U.; Biggs, P.J.; et al. Experimental Observation of a Heavy Particle J. Phys. Rev. Lett. 1974, 33, 1404–1406. https://doi.org/10.1103/PhysRevLett.33.1404.
  • 2.
    Augustin, J.E.; Boyarski, A.M.; Breidenbach, M.; et al. Discovery of a Narrow Resonance in e+ e- Annihilation Phys. Rev. Lett. 1974, 33, 1406–1408. https://doi.org/10.1103/PhysRevLett.33.1406.
  • 3.
    Bacci, C.; Celio, R.B.; Bernardini, M.; et al. Preliminary Result of Frascati (ADONE) on the Nature of a New 3.1-GeV Particle Produced in e+ e- Annihilation Phys. Rev. Lett. 1974, 33, 1408. https://doi.org/10.1103/PhysRevLett.33.1408.
  • 4.
    Bouchiat, C.; Iliopoulos, J.; Meyer, P. An Anomaly-Free Version of Weinberg’s Model. Phys. Lett. B 1972, 38, 519–523. https://doi.org/10.1016/0370-2693(72)90532-1.
  • 5.
    Foot, R.; Lew, H.; Volkas, R.R. A Model with Fundamental Improper Space-Time Symmetries J. Phys. G 1993, 19, 361–372. https://doi.org/10.1088/0954-3899/19/3/005.
  • 6.
    Abrikosov, A.A.; Landau, L.D.; Khalatnikov, I.M. On the elimination of infinities in quantum electrodynamics. Dokl. Akad. Nauk SSSR 1954, 95, 497.
  • 7.
    de Blas, J.; Ciuchini, M.; Franco, E.; et al. Electroweak precision observables and Higgs-boson signal strengths in the Stan- dard Model and beyond: present and future. J. High Energy Phys. 2016, 12, 135. https://doi.org/10.1007/JHEP12(2016)135.
  • 8.
    Bona, M.; Ciuchini, M.; Derkach, D.; et al. Overview and theoretical prospects for CKM matrix and CP violation from the UTfit Collaboration. PoS 2024, 457, 7. https://doi.org/10.22323/1.457.0007.
  • 9.
    Barbieri, R.; Isidori, G.; Jones-Perez, J.; et al. U(2) and minimal flavour violation in supersymmetry. Eur. Phys. J. C 2011, 71, 1725. https://doi.org/10.1140/epjc/s10052-011-1725-z.
  • 10.
    Greljo, A.; Palavri, A.; Thomsen, A.E. Adding Flavor to the SMEFT. JHEP 2022, 10, 005. https://doi.org/10.1007/JHEP10(2022)005.
  • 11.
    Allwicher, L.; Cornella, C.; Stefanek, B.A.; et al. New Physics in the Third Generation: A Comprehensive SMEFT Analysis and Future Prospects. arXiv 2023, arXiv:2311.00020.
  • 12.
    Barbieri, R.; Buttazzo, D.; Sala, F.; et al. A 125 GeV composite Higgs boson versus flavour and electroweak precision tests. JHEP 2013, 5, 069. https://doi.org/10.1007/JHEP05(2013)069.
  • 13.
    Glioti, A.; Rattazzi, R.; Ricci, L.; et al. Exploring the Flavor Symmetry Landscape. arXiv 2024, arXiv:2402.09503.
  • 14.
    Davighi, J.; Isidori, G. Non-universal gauge interactions addressing the inescapable link between Higgs and flavour. JHEP 2023, 7, 147. https://doi.org/10.1007/JHEP07(2023)147.
  • 15.
    Covone, S.; Davighi, J.; Isidori, G.; et al. Flavour deconstructing the composite Higgs. JHEP 2025, 1, 41. https://doi.org/10.1007/JHEP01(2025)041.
  • 16.
    Davighi, J.; Isidori, G.; Pesut, M. Electroweak-flavour and quark-lepton unification: a family non-universal path. JHEP 2023, 4, 30. https://doi.org/10.1007/JHEP04(2023)030.
  • 17.
    Navarro, M.F.; King, S.F. Tri-hypercharge: a separate gauged weak hypercharge for each fermion family as the origin of flavour. JHEP 2023, 8, 20. https://doi.org/10.1007/JHEP08(2023)020.
  • 18.
    Davighi, J.; Stefanek, B.A. Deconstructed Hypercharge: A Natural Model of Flavour. arXiv 2023, arXiv:2305.16280.
  • 19.
    Barbieri, R.; Isidori, G. Minimal flavour deconstruction. JHEP 2024, 5, 33. https://doi.org/10.1007/JHEP05(2024)033.
  • 20.
    Belfatto, B.; Berezhiani, Z. How light the lepton flavor changing gauge bosons can be. Eur. Phys. J. C 2019, 79, 202. https://doi.org/10.1140/epjc/s10052-019-6724-5.
  • 21.
    Barbieri, R. Phenomenology of Minimal Flavour Deconstruction at the lowest new scale. arXiv 2024, arXiv:2409.08657.
  • 22.
    Aad, G.; Abbott, B.; Abbott, D.C.; et al. Search for high-mass dilepton resonances using 139 fb-1 of pp collision data collected at √s = 13 TeV with the ATLAS detector Phys. Lett. B 2019, 796, 68–87. https://doi.org/10.1016/j.physletb.2019.07.016.
  • 23.
    Sirunyan, A.M.; Tumasyan, A.; Adam, W.; et al. Search for resonant and nonresonant new phenomena in high-mass dilepton final states at √s = 13 TeV. JHEP 2021, 7, 208. https://doi.org/10.1007/JHEP07(2021)208.
  • 24.
    Appelquist, T.; Politzer, H.D. Heavy Quarks and e+ e- Annihilation. Phys. Rev. Lett. 1975, 34, 43. https://doi.org/10.1103/PhysRevLett.34.43.
  • 25.
    Rujula, A.D.; Glashow, S.L. Is Bound Charm Found? Phys. Rev. Lett. 1975, 34, 46–49. https://doi.org/10.1103/PhysRevLett.34.46.
  • 26.
    Appelquist, T.; Rujula, A.D.; Politzer, H.D.; et al. Spectroscopy of the New Mesons. Phys. Rev. Lett. 1975, 34, 365. https://doi.org/10.1103/PhysRevLett.34.365.
  • 27.
    Barbieri, R.; Gatto, R.; Kogerler, R.; et al. Meson hyperfine splittings and leptonic decays. Phys. Lett. B 1975, 57, 455–459. https://doi.org/10.1016/0370-2693(75)90267-1.
  • 28.
    Barbieri, R.; Kogerler, R.; Kunszt, Z.; et al. Meson masses and widths in a gauge theory with linear binding potential. Nucl. Phys. B 1976, 105, 125–138. https://doi.org/10.1016/0550-3213(76)90064-X.
  • 29.
    Eichten, E.; Gottfried, K.; Kinoshita, T.; et al. Spectrum of Charmed Quark-Antiquark Bound States. Phys. Rev. Lett. 1975, 34, 369–372. https://doi.org/10.1103/PhysRevLett.34.369.
  • 30.
    Kang, J.S.; Schnitzer, H.J. Dynamics of light and heavy bound quarks. Phys. Rev. D 1975, 12, 841. https://doi.org/10.1103/PhysRevD.12.841.
  • 31.
    Barbieri, R.; Gatto, R.; Kogerler, R. Calculation of the annihilation rate of P wave quark-antiquark bound states. Phys. Lett. B 1976, 60, 183–188. https://doi.org/10.1016/0370-2693(76)90419-6.
  • 32.

    Barbieri, R.; Gatto, R.; Remiddi, E. Singular binding dependence in the hadronic widths of 1++ and 1+- heavy quark antiquark bound states Phys. Lett. B 1976, 61, 465–468. https://doi.org/10.1016/0370-2693(76)90729-2.

  • 33.

    Bagnasco, S.; Baldini, W.; Bettoni, D.; et al. New measurements of the resonance parameters of the χc0(13 P0 ) state of charmonium. Phys. Lett. B 2002, 533, 237–242. https://doi.org/10.1016/S0370-2693(02)01657-X.

  • 34.

    Andreotti, M.; Bagnasco, S.; Baldini, W.; et al. Measurement of the resonance parameters of the χ1 (13P1) and χ2 (13P2) states of charmonium formed in antiproton–proton annihilations. Nucl. Phys. B 2005, 717, 34–47. https://doi.org/10.1016/j.nuclphysb.2005.03.042.

  • 35.
    Brambilla, N.; Eidelman, S.; Heltsley, B.K.; et al. Heavy quarkonium: progress, puzzles, and opportunities. Eur. Phys. J. C 2011, 71, 1534. https://doi.org/10.1140/epjc/s10052-010-1534-9.
Share this article:
How to Cite
Barbieri, R. About BSM Physics, with Emphasis on Flavour. Highlights in High-Energy Physics 2025, 1 (1), 13. https://doi.org/10.53941/hihep.2025.100013.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.