- 1.
Ciuchini, M.; Franco, E.; Martinelli, G.; et al. Estimates of ϵ′/ϵ. arXiv 1995, arXiv:hep-ph/9503277.
- 2.
Ciuchini, M.; D’Agostini, G.; Franco, E.; et al. 2000 CKM-triangle analysis a critical review with updated experimental inputs and theoretical parameters. JHEP 2001, 7, 13. https://doi.org/10.1088/1126-6708/2001/07/013.
- 3.
Cabibbo, N. Unitary Symmetry and Leptonic Decays. Phys. Rev. Lett. 1963, 10, 531–533, https://doi.org/10.1103/PhysRevLett.10.531.
- 4.
Kobayashi, M.; Maskawa, T. CP-Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys. 1973, 49, 652–657, https://doi.org/10.1143/PTP.49.652.
- 5.
Dar, S. The neutron EDM in the SM: A review. arXiv 2000, arXiv:hep-ph/0008248.
- 6.
Bona, M.; Ciuchini, M.; Derkach, D.; et al. New UTfit analysis of the unitarity triangle in the Cabibbo–Kobayashi–Maskawa scheme. Rend. Lincei Sci. Fis. Nat. 2023, 34, 37–57. https://doi.org/10.1007/s12210-023-01137-5.
- 7.
Bona, M.; Ciuchini, M.; Derkach, D.; et al. Unitarity Triangle global fits beyond the Standard Model: UTfit 2021 new physics update. PoS 2022, EPS-HEP2021, 500. https://doi.org/10.22323/1.398.0500.
- 8.
Aoki, Y.; Blum, T.; Colangelo, G.; et al. FLAG review 2021. Eur. Phys. J. C 2022, 82, 869. https://doi.org/10.1140/epjc/s10052-022-10536-1.
- 9.
Glashow, S.L.; Iliopoulos, J.; Maiani, L. Weak Interactions with Lepton-Hadron Symmetry. Phys. Rev. D 1970, 2, 1285–1292. https://doi.org/10.1103/PhysRevD.2.1285.
- 10.
Wolfenstein, L. Parametrization of the Kobayashi-Maskawa Matrix. Phys. Rev. Lett. 1983, 51, 1945, https://doi.org/10.1103/PhysRevLett.51.1945.
- 11.
Martinelli, G.; Simula, S.; Vittorio, L. Updates on the determination of |Vcb |, R(D* ) and |Vub |/|Vcb | . arXiv 2023, arXiv:2310.03680.
- 12.
Cirigliano, V.; Dekens, W.; Mereghetti, E.; et al. Effective field theory for radiative corrections to charged-current processes: Vector coupling. Phys. Rev. D 2023, 108, 53003. https://doi.org/10.1103/PhysRevD.108.053003.
- 13.
D’Agostini, G. Skeptical combination of experimental results using JAGS/rjags with application to the K± mass determina- tion. arXiv 2020, arXiv:2001.03466.
- 14.
Aaij, R.; Abdelmotteleb, A.S.W.; Abellan, Beteta, C.; et al. Measurement of Violation in Decays. Phys. Rev. Lett. 2024, 132, 021801. https://doi.org/10.1103/PhysRevLett.132.021801.
- 15.
Ciuchini, M.; Pierini, M.; Silvestrini, L. Effect of Penguin Operators in the Asymmetry Phys. Rev. Lett. 2005, 95, 221804. https://doi.org/10.1103/PhysRevLett.95.221804.
- 16.
Kagan, A.L.; Silvestrini, L. Dispersive and absorptive CP violation in D0 - D-0 mixing. Phys. Rev. D 2021, 103, 053008. https://doi.org/10.1103/PhysRevD.103.053008.
- 17.
Aaij, R.; Abdelmotteleb, A.S.W.; Abellan, Beteta, C.; et al. Measurement of the ratio RD( *) in semileptonic B0 → D(*)τ− ν τ decays. JHEP 2021, 12, 141. https://doi.org/10.1007/JHEP12(2021)141.
- 18.
Martinelli, G.; Simula, S.; Vittorio, L. Simultaneous determination of CKM angle γ and charm mixing parameters. Phys. Rev. D 2022, 105, 034503. https://doi.org/10.1103/PhysRevD.105.034503.
- 19.
Aaij, R.; Adeva, B.; Adinolfi, M.; et al. Addendum: Test of lepton universality in beauty-quark decays Nat. Phys. 2023, 19, 1517. https://doi.org/10.1038/s41567-023-02095-3.
- 20.
Aaij, R.; Adeva, B.; Adinolfi, M.; et al. Test of lepton universality with B0 → K*0 ℓ+ ℓ-decays. JHEP 2017, 8, 55. https://doi.org/10.1007/JHEP08(2017)055.
- 21.
Aaij, R.; Abdelmotteleb, A.S.W.; Abellan, Beteta, C.; et al. Test of Lepton Universality in Decays. Phys. Rev. Lett. 2023, 131, 51803. https://doi.org/10.1103/PhysRevLett.131.051803.
- 22.
Ciuchini, M.; Fedele, M.; Franco, E.; et al. Constraints on lepton universality violation from rare decays. Phys. Rev. D 2023, 107, 055036. https://doi.org/10.1103/PhysRevD.107.055036.
- 23.
Greljo, A.; Salko, J.; Smolkovi, A.; et al. Rare b decays meet high-mass Drell-Yan. JHEP 2023, 5, 87. https://doi.org/10.1007/JHEP05(2023)087.
- 24.
Bona, M.; Ciuchini, M.; Franco, E.; et al. Model-independent constraints on ∆F = 2 operators and the scale of new physics. JHEP 2008, 3, 49. https://doi.org/10.1088/1126-6708/2008/03/049.
- 25.
Buras, A.J.; Gambino, P.; Gorbahn, M.; et al. Universal unitarity triangle and physics beyond the standard model. Phys. Lett. B 2001, 500, 161–167. https://doi.org/10.1016/S0370-2693(01)00061-2.
- 26.
Kou, E.; Urquijo, P.; Altmannshofer, W.; et al. The Belle II Physics Book. PTEP 2019, 2019, 123C01. https://doi.org/10.1093/ptep/ptz106.
- 27.
Descotes-Genon, S.; Falkowski, A.; Fedele, M.; et al. The CKM parameters in the SMEFT. JHEP 2019, 5, 172. https://doi.org/10.1007/JHEP05(2019)172.
- 28.
Silvestrini, L.; Valli, M. Model-independent bounds on the standard model effective theory from flavour physics. Phys. Lett. B 2019, 799, 135062. https://doi.org/10.1016/j.physletb.2019.135062.
- 29.
Aebischer, J.; Bobeth, C.; Buras, A.J.; et al SMEFT atlas of ∆F = 2 transitions. JHEP 2020, 12, 187. https://doi.org/10.1007/JHEP12(2020)187.
- 30.
Garosi, F.; Marzocca, D.; Rodriguez-Sanchez, A.; et al. Indirect constraints on top quark operators from a global SMEFT analysis. JHEP 2023, 12, 129. https://doi.org/10.1007/JHEP12(2023)129.
- 31.
Allwicher, L.; Cornella, C.; Isidori, G.; et al. New Physics in the Third Generation: A Comprehensive SMEFT Analysis and Future Prospects. arXiv 2023, arXiv:2311.00020.