- 1.
Rossi, B. Method of Registering Multiple Simultaneous Impulses of Several Geiger’s Counters. Nature 1930, 125, 636.
- 2.
Rossi, B. U… ber die Eigenschaften der durchdringenden Korpuskularstrahlung im Meeresniveau. Z. Phys. 1933, 82, 151–173.
- 3.
Auger, P.; Ehrenfest, P.; Maze, R.; et al. Extensive cosmic ray showers. Rev. Mod. Phys. 1939, 11, 288–291.
- 4.
Kampert, K.H.; Watson, A.A.; Watson, A.A. Extensive Air Showers and Ultra High-Energy Cosmic Rays: A Historical Review. Eur. Phys. J. H 2012, 37, 359–412.
- 5.
Penzias, A.A.; Wilson, R.W. A Measurement of excess antenna temperature at 4080-Mc/s. Astrophys. J. 1965, 142, 419–421.
- 6.
Dicke, R.H.; Peebles, P.J.E.; Roll, P.G.; et al. Cosmic Black-Body Radiation. Astrophys. J. 1965, 142, 414–419.
- 7.
Greisen, K. End to the cosmic ray spectrum? Phys. Rev. Lett. 1966, 16, 748–750.
- 8.
Zatsepin, G.T.; Kuzmin, V.A. Upper limit of the spectrum of cosmic rays. JETP Lett. 1966, 4, 78–80.
- 9.
Gaisser, T.K. Cosmic Rays and Particle Physics; Cambridge University Press: Cambridge, UK, 1990.
- 10.
Kampert, K.H.; Unger, M. Measurements of the Cosmic Ray Composition with Air Shower Experiments. Astropart. Phys. 2012, 35, 660–678.
- 11.
Anchordoqui, L.A. Ultra-High-Energy Cosmic Rays. Phys. Rept. 2019, 801, 1–93.
- 12.
Evans, L.; Bryant, P. LHC Machine. J. Instrum. 2008, 3, S08001.
- 13.
Ostapchenko, S. Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET-II model. Phys. Rev. D 2011, 83, 014018.
- 14.
Aab, A.; Abreu, P.; Aglietta, M.; et al. Muons in Air Showers at the Pierre Auger Observatory: Mean Number in Highly Inclined Events. Phys. Rev. D 2015, 91, 032003.
- 15.
Aab, A.; Abreu, P.; Aglietta, M.; et al. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory. Phys. Rev. Lett. 2016, 117, 192001.
- 16.
Matthews, J. A Heitler model of extensive air showers. Astropart. Phys. 2005, 22, 387–397.
- 17.
Abraham, J.; Abreu, P.; Aglietta, M.; et al. Measurement of the Depth of Maximum of Extensive Air Showers above 1018 eV. Phys. Rev. Lett. 2010, 104, 091101.
- 18.
Aab, A.; Abreu, P.; Aglietta, M.; et al. Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: Measurements at Energies above 1017.8 eV. Phys. Rev. D 2014, 90, 122005.
- 19.
Aab, A.; Abreu, P.; Aglietta, M.; et al. Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory. JCAP 2017, 04, 038.
- 20.
Unger, M.; Farrar, G.R.; Anchordoqui, L.A. Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it. Phys. Rev. D 2015, 92, 123001.
- 21.
Kotera, K.; Olinto, A.V. The Astrophysics of Ultrahigh Energy Cosmic Rays. Ann. Rev. Astron. Astrophys. 2011, 49, 119–153.
- 22.
Ahlers, M.; Halzen, F. Minimal Cosmogenic Neutrinos. Phys. Rev. D 2012, 86, 083010.
- 23.
Berezinsky, V.; Gazizov, A.Z.; Grigorieva, S.I. On astrophysical solution to ultrahigh-energy cosmic rays. Phys. Rev. D 2006, 74, 043005.
- 24.
Aloisio, R.; Berezinsky, V.; Blasi, P. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition. JCAP 2014, 10, 020.
- 25.
Hillas, A.M. The Origin of Ultrahigh-Energy Cosmic Rays. Ann. Rev. Astron. Astrophys. 1984, 22, 425–444.
- 26.
Alvarez-Muiz, J. Ultra-high energy neutrinos: Status and prospects. PoS 2017, 301, 1111.
- 27.
Halzen, F.; Klein, S.R. IceCube: An Instrument for Neutrino Astronomy. Rev. Sci. Instrum. 2010, 81, 081101.
- 28.
Connolly, A.; Thorne, R.S.; Waters, D. Calculation of High Energy Neutrino-Nucleon Cross Sections and Uncertainties Using the MSTW Parton Distribution Functions and Implications for Future Experiments. Phys. Rev. D 2011, 83, 113009.
- 29.
Abraham, J.; Abreu, P.; Aglietta, M.; et al. Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory. Phys. Rev. Lett. 2008, 100, 211101.
- 30.
Aab, A.; Abreu, P.; Aglietta, M.; et al. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory. Phys. Rev. D 2015, 91, 092008.
- 31.
Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. The IceCube Neutrino Observatory: Instrumentation and Online Systems. J. Instrum. 2017, 12, P03012.
- 32.
Katz, U.F.; Spiering, C. High-Energy Neutrino Astrophysics: Status and Perspectives. Prog. Part. Nucl. Phys. 2012, 67, 651–704.
- 33.
Decoene, V. Review of Neutrino Experiments Searching for Astrophysical Neutrinos. PoS 2023, ICRC2023, 026.
- 34.
Adrian-Martinez, S.; Ageron, M.; Aharonian, F.; et al. Letter of intent for KM3NeT 2.0. J. Phys. G 2016, 43, 084001.
- 35.
Avrorin, A.D.; Avrorin, A.V.; Aynutdinov, V.M.; et al. Baikal-GVD: status and prospects. EPJ Web Conf. 2018, 191, 01006.
- 36.
Agostini, M.; Bo… hmer, M.; Bosma, J..; et al. The Pacific Ocean Neutrino Experiment. Nat. Astron. 2020, 4, 913–915.
- 37.
Huang, T.Q.; Cao, Z.; Chen, M.; et al. Proposal for the High Energy Neutrino Telescope. PoS 2023, ICRC2023, 1080.
- 38.
Zhang, H.; Cui, Y.; Huang, Y.; et al. A proposed deep sea Neutrino Observatory in the Nanhai. Astropart. Phys. 2025, 171, 103123.
- 39.
Ye, Z.P.; Hu, F.; Tian, W.; et al. A multi-cubic-kilometre neutrino telescope in the western Pacific Ocean. Nat. Astron. 2023, 7, 1497–1505.
- 40.
The KM3NeT Collaboration. Observation of an ultra-high-energy cosmic neutrino with KM3NeT. Nature 2025, 638, 376–382.
- 41.
Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data. Phys. Rev. Lett. 2020, 125, 121104.
- 42.
Gandhi, R.; Quigg, C.; Reno, M.H.; et al. Neutrino interactions at ultrahigh-energies. Phys. Rev. D 1998, 58, 093009.
- 43.
Learned, J.G.; Mannheim, K. High-energy neutrino astrophysics. Ann. Rev. Nucl. Part. Sci. 2000, 50, 679–749.
- 44.
Gaisser, T.K.; Halzen, F.; Stanev, T. Particle astrophysics with high-energy neutrinos. Phys. Rept. 1995, 258, 173–236.
- 45.
Halzen, F. Astroparticle physics with high energy neutrinos: from AMANDA to IceCube. Eur. Phys. J. C 2006, 46, 669–687.
- 46.
Honda, M.; Kajita, T.; Kasahara, K.; et al. A New calculation of the atmospheric neutrino flux in a 3-dimensional scheme. Phys. Rev. D 2004, 70, 043008.
- 47.
Lipari, P.; Stanev, T. Propagation of multi-TeV muons. Physical Review D 1991, 44, 3543–3554.
- 48.
Groom, D.E.; Mokhov, N.V.; Striganov, S.I. Muon stopping power and range tables 10-MeV to 100-TeV. Atom. Data Nucl. Data Tabl. 2001, 78, 183–356.
- 49.
Aiello, S.; Akrame, S.E.; Ameli, F.; et al. Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Astropart. Phys. 2019, 111, 100–110.
- 50.
Photomultiplier Tubes: Basics and Applications. In Hamamatsu Photonics Technical Manual, 3rd ed.; Hamamatsu Photonics: Shizuoka, Japan, 2007
- 51.
Aiello, S.; Albert, A.; Alshamsi, M.; et al. The KM3NeT multi-PMT optical module. J. Instrum. 2022, 17, P07038.
- 52.
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; et al The Design and Performance of IceCube DeepCore. Astropart. Phys. 2012, 35, 615–624.
- 53.
Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore. Phys. Rev. Lett. 2018, 120, 071801.
- 54.
Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. Measurement of the Atmospheric νe Spectrum with IceCube. Phys. Rev. D 2015, 91, 122004.
- 55.
IceCube Collaboration. IceCube Neutrino Observatory—Status and Performance Reports. 2023. Available online: https://icecube.wisc.edu/science/data/ (accessed on 10 August 2025).
- 56.
Dornic, D.; KM3NeT Collaboration. The KM3NeT neutrino telescope: status and recent results. In Proceedings of the 38th International Cosmic Ray Conference (ICRC 2025), Geneva, Switzerland, 14–24 July 2025.
- 57.
ANTARES Collaboration. Position calibration of the KM3NeT detector. PoS 2021, 395, 1127.
- 58.
KM3NeT Collaboration. KM3NeT Conceptual Design Report; Technical report; KM3NeT Consortium: Toulon, France, 2008.
- 59.
Aartsen, M.G.; Abbasi, R.; Abdou, Y.; et al. Measurement of South Pole ice transparency with the IceCube LED calibration system. Nucl. Instrum. Meth. A 2013, 711, 73–89.
- 60.
Abbasi, R.; Ackermann, M.; Adams, J.; et al. In Situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory. Cryosphere 2024, 18, 75–102.
- 61.
IceCube Collaboration. An improved mapping of ice layer undulations for the IceCube Neutrino Observatory. Proc. Sci. 2023, 444, 975.
- 62.
Gaisser, T.K.; Engel, R.; Resconi, E. Cosmic Rays and Particle Physics, 2 ed.; Cambridge University Press: Cambridge, UK, 2016.
- 63.
Aartsen, M.G.; Abraham, K.; Ackermann, M.; et al Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data. Astrophys. J. 2016, 833, 3.
- 64.
Enberg, R.; Reno, M.H.; Sarcevic, I. Prompt neutrino fluxes from atmospheric charm. Phys. Rev. D 2008, 78, 043005.
- 65.
Van Rootselaar, L.; Kardum, L.; Witthaus, L.; et al. Unfolding the Muon Neutrino Spectrum with Eleven Years of IceCube Data. In Proceedings of the 38th International Cosmic Ray Conference (ICRC 2025), Geneva, Switzerland, 14–24 July 2025.
- 66.
Aiello, S.; Albert, A.; Alhebsi, A.R.; et al. Measurement of the atmospheric νμ flux with six detection units of KM3NeT/ORCA. Eur. Phys. J. C 2025, 85, 871.
- 67.
Abbasi, R.; Ackermann, M.; Adams, J.; et al. The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data. Phys. Rev. D 2021, 104, 022002.
- 68.
The IceCube Collaboration. Detection of a particle shower at the Glashow resonance with IceCube. Nature 2021, 591, 220–224.
- 69.
Abbasi, R.; Ackermann, M.; Adams, J.; et al. Evidence for a Spectral Break or Curvature in the Spectrum of Astrophysical Neutrinos from 5 TeV–10 PeV. arXiv 2025, arXiv:astro-ph.HE/2507.22233.
- 70.
Lyu, Y. Probing the PeV Astrophysical Neutrino Spectral Cutoff Using Downgoing Tracks at IceCube. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2024.
- 71.
Abbasi, R.; Ackermann, M.; Adams, J.; et al. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 2022, 378, 538–543.
- 72.
IceCube Collaboration. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube- 170922A. Science 2018, 361, eaat1378.
- 73.
Abbasi, R.; Ackermann, M.; Adams, J.; et al. Characterization of the astrophysical diffuse neutrino flux using starting track events in IceCube. Phys. Rev. D 2024, 110, 022001.
- 74.
Abbasi, R.; Ackermann, M.; Adams, J.; et al. Improved modeling of in-ice particle showers for IceCube event reconstruction. J. Instrum. 2024, 19, P06026.
- 75.
Yaez, J.P.; Fedynitch, A. Data-driven muon-calibrated neutrino flux. Phys. Rev. D 2023, 107, 123037.
- 76.
Yildizci, E.; Rechav, Z.; Lu, L. Measurement of All Flavor PeV Neutrino Flux using Combined Datasets from IceCube. arXiv 2025, arXiv:2508.05886.
- 77.
Abbasi, R.; Ackermann, M.; Adams, J.; et al. Search for Extremely-High-Energy Neutrinos and First Constraints on the Ultrahigh-Energy Cosmic-Ray Proton Fraction with IceCube. Phys. Rev. Lett. 2025, 135, 031001.
- 78.
Filippini, F.; KM3NeT Collaboration. Search for a diffuse astrophysical neutrino flux with KM3NeT/ARCA. In Proceedings of the 38th International Cosmic Ray Conference (ICRC 2025), Geneva, Switzerland, 14–24 July 2025.
- 79.
van Vliet, A.; Alves Batista, R.; Ho… randel, J.R. Determining the fraction of cosmic-ray protons at ultrahigh energies with cosmogenic neutrinos. Phys. Rev. D 2019, 100, 021302.
- 80.
The IceCube Collaboration. Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption. Nature 2017, 551, 596–600.
- 81.
Abbasi, R.; Abdou, Y.; Ackermann, M.; et al. IceTop: The surface component of IceCube. Nucl. Instrum. Meth. A 2013, 700, 188–220.
- 82.
Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data. Phys. Rev. D 2018, 98, 062003.
- 83.
Aartsen, M.G.; Abbasi, R.; Ackermann, M.; et al. Energy Reconstruction Methods in the IceCube Neutrino Telescope. J. Instrum. 2014, 9, P03009.
- 84.
Abbasi, R.; Abdou, Y.; Ackermann, M.; et al. An improved method for measuring muon energy using the truncated mean of dE/dx. Nucl. Instrum. Meth. A 2013, 703, 190–198.
- 85.
Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. The IceCube Realtime Alert System. Astropart. Phys. 2017, 92, 30–41.
- 86.
Blaufuss, E.; Kintscher, T.; Lu, L.; et al. The Next Generation of IceCube Real-time Neutrino Alerts. PoS 2020, ICRC2019, 1021.
- 87.
Riehn, F.; Engel, R.; Fedynitch, A.; et al. Hadronic interaction model Sibyll 2.3d and extensive air showers. Phys. Rev. D 2020, 102, 063002.
- 88.
Meier, M.; Clark, B.A. A search for extremely-high-energy neutrinos with IceCube and implications for the ultra-high- energy cosmic-ray proton fraction. arXiv 2025, arXiv:astro-ph.HE/2507.07497.
- 89.
Abbasi, R.; Ackermann, M.; Adams, J.; et al. Improved Characterization of the Astrophysical Muon-neutrino Flux with 9.5 Years of IceCube Data. Astrophys. J. 2022, 928, 50.
- 90.
IceCube Collaboration. IceCube-190331A: IceCube observation of a high-energy neutrino candidate event. In Astron. Telegr. 2019, 12616, 1.
- 91.
IceCube Collaboration. Updated directions of IceCube HESE events with the latest ice model using DirectFit. PoS 2023, 444, 1030.
- 92.
Basu, V.; Balagopal, V.A.; Karle, A. Measurement of the Diffuse Astrophysical Neutrino Spectrum above a TeV with All Flavor Starting Events in IceCube. arXiv 2025, arXiv:astro-ph.HE/2507.06002.
- 93.
Abbasi, R.; Ackermann, M.; Adams, J.; et al. A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory. J. Instrum. 2021, 16, P07041.
- 94.
Chirkin, D. Event reconstruction in IceCube based on direct event re-simulation. In Proceedings of the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, 2–9 July 2013.
- 95.
Nakos, M.; Rosted, A.; Lu, L. Enhancements to the IceCube Extremely High Energy Neutrino Selection using Graph & Transformer Based Neural Networks. arXiv 2025, arXiv:astro-ph.HE/2507.11774.
- 96.
Dunsch, M.; Soedingrekso, J.; Sandrock, A.; et al. Recent Improvements for the Lepton Propagator PROPOSAL. Comput. Phys. Commun. 2019, 242, 132–144.
- 97.
Kistler, M.D.; Laha, R. Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance. Phys. Rev. Lett. 2018, 120, 241105.
- 98.
Adriani, O.; Aiello, S.; Albert, A.; et al. Ultrahigh-Energy Event KM3-230213A within the Global Neutrino Landscape. Phys. Rev. X 2025, 15, 031016.
- 99.
Li, S.W.; Machado, P.; Naredo-Tuero, D.; et al. Clash of the Titans: ultra-high energy KM3NeT event versus IceCube data. arXiv 2025, arXiv:astro-ph.HE/2502.04508.
- 100.
Das, S.; Zhang, B.; Razzaque, S.; et al. Cosmic-Ray Constraints on the Flux of Ultra-High-Energy Neutrino Event KM3-230213A. arXiv 2025, arXiv:astro-ph.HE/2504.10847.
- 101.
Muzio, M.S.; Yuan, T.; Lu, L. Emergence of a neutrino flux above 5 PeV and implications for ultrahigh energy cosmic rays. arXiv 2025, arXiv:astro-ph.HE/2502.06944.
- 102.
Das, S.; Razzaque, S.; Gupta, N. Modeling the spectrum and composition of ultrahigh-energy cosmic rays with two populations of extragalactic sources. Eur. Phys. J. C 2021, 81, 59.
- 103.
Kuznetsov, M.Y.; Petrov, N.A.; Savchenko, Y.S. Ultra-high energy event KM3-230213A as a cosmogenic neutrino in light of minimal UHECR flux models. arXiv 2025, arXiv:astro-ph.HE/2509.09590.
- 104.
Zhang, Q.; Huang, T.Q.; Li, Z. Cosmogenic Neutrino Point Source and KM3-230213A. Astrophys. J. 2025, 990, 78.
- 105.
Adriani, O.; Aiello, S.; Albert, A.; et al. On the Potential Cosmogenic Origin of the Ultra-high-energy Event KM3-230213A. Astrophys. J. Lett. 2025, 984, L41.
- 106.
Schneider, A.; Kamp, N.W.; Wen, A.Y. SIREN: An Open Source Neutrino Injection Toolkit. arXiv 2024, arXiv:hep- ex/2406.01745.
- 107.
Chirkin, D.; Rhode, W. Muon Monte Carlo: A High-precision tool for muon propagation through matter. arXiv 2004, arXiv:hep-ph/0407075.
- 108.
Pierre Auger Collaboration. Latest results from the searches for ultra-high-energy photons and neutrinos at the Pierre Auger Observatory. PoS 2023, 444, 1488.
- 109.
Aab, A. Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory. JCAP 2019, 11, 004.
- 110.
Lu, L. Multi-flavour PeV neutrino search with IceCube. PoS 2018, ICRC2017, 1002.
- 111.
Abreu, P.; Aglietta, M.; Albury, J.M.; et al. The energy spectrum of cosmic rays beyond the turn-down around 1017 eV as measured with the surface detector of the Pierre Auger Observatory. Eur. Phys. J. C 2021, 81, 966.
- 112.
Aab, A.; Abreu, P.; Aglietta, M.; et al. Depth of Maximum of Air-Shower Profiles above 1017.8eV Measured with the Fluorescence Detector of the Pierre Auger Observatory and Mass Composition Implications. PoS 2023, ICRC2023, 319.
- 113.
Muzio, M.S.; Unger, M.; Farrar, G.R. Progress towards characterizing ultrahigh energy cosmic ray sources. Phys. Rev. D 2019, 100, 103008.
- 114.
Muzio, M.S.; Farrar, G.R.; Unger, M. Probing the environments surrounding ultrahigh energy cosmic ray accelerators and their implications for astrophysical neutrinos. Phys. Rev. D 2022, 105, 023022.
- 115.
Naab, R.; Ganster, E.; Zhang, Z. Measurement of the astrophysical diffuse neutrino flux in a combined fit of IceCube’s high energy neutrino data. PoS 2023, ICRC2023, 1064.
- 116.
Zaborov, D. Neutrino astronomy at Lake Baikal. arXiv 2024, arXiv:astro-ph.HE/2412.00164.
- 117.
IceCube-Gen2 Collaboration. The IceCube-Gen2 Neutrino Observatory; Technical Design Report, Parts I, II, and III; University of Wisconsin–Madison: Madison, WI, USA, 2024.
- 118.
Olinto, A.V.; Krizmanic, J.; Adams, J.H.; et al. The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) observatory. J. Cosmol. Astropart. Phys. 2021, 6, 7.
- 119.
Allison, P.; Archambault, S.; Beatty, J.J.; et al. Constraints on the diffuse flux of ultrahigh energy neutrinos from four years of Askaryan Radio Array data in two stations. Phys. Rev. D 2020, 102, 043021.
- 120.
Aguilar, J.A.; Allison, P.; Beatty, J.J.; et al. Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G). J. Instrum. 2021, 16, P03025.
- 121.
Álvarez-Muñiz, J.; Alves, Batista, R.; Balagopal, V.; A.; et al. The Giant Radio Array for Neutrino Detection (GRAND): Science and Design. Sci. China Phys. Mech. Astron. 2020, 63, 219501.
- 122.
Wissel, S.; Romero-Wolf, A.; Schoorlemmer, H.; et al. Prospects for high-elevation radio detection of >100 PeV tau neutrinos. J. Cosmol. Astropart. Phys. 2020, 11, 065.
- 123.
Romero-Wolf, A.; Alvarez-Mu Neutrinos. arXiv 2020, arXiv:astro-ph.IM/2002.06475.
- 124.
Gorham, P.W.; Allison, P.; Banerjee, O.; et al. Constraints on the ultrahigh-energy cosmic neutrino flux from the fourth flight of ANITA. Phys. Rev. D 2019, 99, 122001.
- 125.
Abarr, Q.; Allison, P.; Yebra, J.A.; et al. The Payload for Ultrahigh Energy Observations (PUEO): A white paper. J. Instrum. 2021, 16, P08035.
- 126.
Buitink, S.; Bacelar, J.; Braun, R.; et al. The NuMoon experiment: first results. arXiv 2008, arXiv:astro-ph/0808.1878.
- 127.
Brown, A.M.; Bagheri, M.; Doro, M.; et al. Trinity: an imaging air Cherenkov telescope to search for Ultra-High-Energy neutrinos. PoS 2021, ICRC2021, 1179.
- 128.
Prohira, S.; De Vries, K.D.; Allison, P.; et al. Observation of Radar Echoes From High-Energy Particle Cascades. Phys. Rev. Lett. 2020, 124, 091101.
- 129.
Ackermann, M.; Bustamante, M.; Lu, L.; et al. High-energy and ultra-high-energy neutrinos: A Snowmass white paper. J. High Energy Astrophys. 2022, 36, 55–110.
- 130.
Anker, A.; Barwick, S.W.; Bernhoff, H.; et al. A search for cosmogenic neutrinos with the ARIANNA test bed using 4.5 years of data. J. Cosmol. Astropart. Phys. 2020, 3, 53.
- 131.
Aguilar, J.A.; Allison, P.; Beatty, J.J.; et al. The Radio Neutrino Observatory Greenland (RNO-G). PoS 2021, 395, 001.
- 132.
Fang, K.; Murase, K. Linking High-Energy Cosmic Particles by Black Hole Jets Embedded in Large-Scale Structures. Nature Phys. 2018, 14, 396.
- 133.
Biehl, D.; Boncioli, D.; Lunardini, C.; et al. Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies. Sci. Rep. 2018, 8, 10828.