2509001435
  • Open Access
  • Review
Extreme High-Energy Neutrinos: IceCube vs. KM3NeT
  • Lu Lu *,   
  • Tianlu Yuan

Received: 15 Aug 2025 | Revised: 19 Sep 2025 | Accepted: 25 Sep 2025 | Published: 29 Sep 2025

Abstract

We review the state of the art in the detection of extreme high-energy neutrinos, focusing on the IceCube and KM3NeT neutrino telescopes. IceCube, operating deep in Antarctic ice, and KM3NeT, a new array in the Mediterranean Sea, employ distinct designs to capture Cherenkov light from neutrino interactions. We examine their detector architectures, readout and reconstruction performance for PeV-scale and higher-energy neutrinos. Recent candidate events above 5 PeV are highlighted. These include a ∼120 PeV muon track observed by KM3NeT in 2023, and IceCube’s highest-energy detections, which comprise several-PeV showers and tracks. We outline current approaches to neutrino energy reconstruction and explore scenarios that might explain the apparent differences in observed event characteristics. Finally, we summarize future prospects for extreme-energy neutrino observations and their implications for astrophysical source populations and cosmogenic neutrinos.

References 

  • 1.
    Rossi, B. Method of Registering Multiple Simultaneous Impulses of Several Geiger’s Counters. Nature 1930, 125, 636.
  • 2.
    Rossi, B. U… ber die Eigenschaften der durchdringenden Korpuskularstrahlung im Meeresniveau. Z. Phys. 1933, 82, 151–173.
  • 3.
    Auger, P.; Ehrenfest, P.; Maze, R.; et al. Extensive cosmic ray showers. Rev. Mod. Phys. 1939, 11, 288–291.
  • 4.
    Kampert, K.H.; Watson, A.A.; Watson, A.A. Extensive Air Showers and Ultra High-Energy Cosmic Rays: A Historical Review. Eur. Phys. J. H 2012, 37, 359–412.
  • 5.
    Penzias, A.A.; Wilson, R.W. A Measurement of excess antenna temperature at 4080-Mc/s. Astrophys. J. 1965, 142, 419–421.
  • 6.
    Dicke, R.H.; Peebles, P.J.E.; Roll, P.G.; et al. Cosmic Black-Body Radiation. Astrophys. J. 1965, 142, 414–419.
  • 7.
    Greisen, K. End to the cosmic ray spectrum? Phys. Rev. Lett. 1966, 16, 748–750.
  • 8.
    Zatsepin, G.T.; Kuzmin, V.A. Upper limit of the spectrum of cosmic rays. JETP Lett. 1966, 4, 78–80.
  • 9.
    Gaisser, T.K. Cosmic Rays and Particle Physics; Cambridge University Press: Cambridge, UK, 1990.
  • 10.
    Kampert, K.H.; Unger, M. Measurements of the Cosmic Ray Composition with Air Shower Experiments. Astropart. Phys. 2012, 35, 660–678.
  • 11.
    Anchordoqui, L.A. Ultra-High-Energy Cosmic Rays. Phys. Rept. 2019, 801, 1–93.
  • 12.
    Evans, L.; Bryant, P. LHC Machine. J. Instrum. 2008, 3, S08001.
  • 13.
    Ostapchenko, S. Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET-II model. Phys. Rev. D 2011, 83, 014018.
  • 14.
    Aab, A.; Abreu, P.; Aglietta, M.; et al. Muons in Air Showers at the Pierre Auger Observatory: Mean Number in Highly Inclined Events. Phys. Rev. D 2015, 91, 032003.
  • 15.
    Aab, A.; Abreu, P.; Aglietta, M.; et al. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory. Phys. Rev. Lett. 2016, 117, 192001.
  • 16.
    Matthews, J. A Heitler model of extensive air showers. Astropart. Phys. 2005, 22, 387–397.
  • 17.
    Abraham, J.; Abreu, P.; Aglietta, M.; et al. Measurement of the Depth of Maximum of Extensive Air Showers above 1018 eV. Phys. Rev. Lett. 2010, 104, 091101.
  • 18.
    Aab, A.; Abreu, P.; Aglietta, M.; et al. Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: Measurements at Energies above 1017.8 eV. Phys. Rev. D 2014, 90, 122005.
  • 19.
    Aab, A.; Abreu, P.; Aglietta, M.; et al. Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory. JCAP 2017, 04, 038.
  • 20.
    Unger, M.; Farrar, G.R.; Anchordoqui, L.A. Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it. Phys. Rev. D 2015, 92, 123001.
  • 21.
    Kotera, K.; Olinto, A.V. The Astrophysics of Ultrahigh Energy Cosmic Rays. Ann. Rev. Astron. Astrophys. 2011, 49, 119–153.
  • 22.
    Ahlers, M.; Halzen, F. Minimal Cosmogenic Neutrinos. Phys. Rev. D 2012, 86, 083010.
  • 23.
    Berezinsky, V.; Gazizov, A.Z.; Grigorieva, S.I. On astrophysical solution to ultrahigh-energy cosmic rays. Phys. Rev. D 2006, 74, 043005.
  • 24.
    Aloisio, R.; Berezinsky, V.; Blasi, P. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition. JCAP 2014, 10, 020.
  • 25.
    Hillas, A.M. The Origin of Ultrahigh-Energy Cosmic Rays. Ann. Rev. Astron. Astrophys. 1984, 22, 425–444.
  • 26.
    Alvarez-Muiz, J. Ultra-high energy neutrinos: Status and prospects. PoS 2017, 301, 1111.
  • 27.
    Halzen, F.; Klein, S.R. IceCube: An Instrument for Neutrino Astronomy. Rev. Sci. Instrum. 2010, 81, 081101.
  • 28.
    Connolly, A.; Thorne, R.S.; Waters, D. Calculation of High Energy Neutrino-Nucleon Cross Sections and Uncertainties Using the MSTW Parton Distribution Functions and Implications for Future Experiments. Phys. Rev. D 2011, 83, 113009.
  • 29.
    Abraham, J.; Abreu, P.; Aglietta, M.; et al. Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger Observatory. Phys. Rev. Lett. 2008, 100, 211101.
  • 30.
    Aab, A.; Abreu, P.; Aglietta, M.; et al. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory. Phys. Rev. D 2015, 91, 092008.
  • 31.
    Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. The IceCube Neutrino Observatory: Instrumentation and Online Systems. J. Instrum. 2017, 12, P03012.
  • 32.
    Katz, U.F.; Spiering, C. High-Energy Neutrino Astrophysics: Status and Perspectives. Prog. Part. Nucl. Phys. 2012, 67, 651–704.
  • 33.
    Decoene, V. Review of Neutrino Experiments Searching for Astrophysical Neutrinos. PoS 2023, ICRC2023, 026.
  • 34.
    Adrian-Martinez, S.; Ageron, M.; Aharonian, F.; et al. Letter of intent for KM3NeT 2.0. J. Phys. G 2016, 43, 084001.
  • 35.
    Avrorin, A.D.; Avrorin, A.V.; Aynutdinov, V.M.; et al. Baikal-GVD: status and prospects. EPJ Web Conf. 2018, 191, 01006.
  • 36.
    Agostini, M.; Bo… hmer, M.; Bosma, J..; et al. The Pacific Ocean Neutrino Experiment. Nat. Astron. 2020, 4, 913–915.
  • 37.
    Huang, T.Q.; Cao, Z.; Chen, M.; et al. Proposal for the High Energy Neutrino Telescope. PoS 2023, ICRC2023, 1080.
  • 38.
    Zhang, H.; Cui, Y.; Huang, Y.; et al. A proposed deep sea Neutrino Observatory in the Nanhai. Astropart. Phys. 2025, 171, 103123.
  • 39.
    Ye, Z.P.; Hu, F.; Tian, W.; et al. A multi-cubic-kilometre neutrino telescope in the western Pacific Ocean. Nat. Astron. 2023, 7, 1497–1505.
  • 40.
    The KM3NeT Collaboration. Observation of an ultra-high-energy cosmic neutrino with KM3NeT. Nature 2025, 638, 376–382.
  • 41.
    Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data. Phys. Rev. Lett. 2020, 125, 121104.
  • 42.
    Gandhi, R.; Quigg, C.; Reno, M.H.; et al. Neutrino interactions at ultrahigh-energies. Phys. Rev. D 1998, 58, 093009.
  • 43.
    Learned, J.G.; Mannheim, K. High-energy neutrino astrophysics. Ann. Rev. Nucl. Part. Sci. 2000, 50, 679–749.
  • 44.
    Gaisser, T.K.; Halzen, F.; Stanev, T. Particle astrophysics with high-energy neutrinos. Phys. Rept. 1995, 258, 173–236.
  • 45.
    Halzen, F. Astroparticle physics with high energy neutrinos: from AMANDA to IceCube. Eur. Phys. J. C 2006, 46, 669–687.
  • 46.
    Honda, M.; Kajita, T.; Kasahara, K.; et al. A New calculation of the atmospheric neutrino flux in a 3-dimensional scheme. Phys. Rev. D 2004, 70, 043008.
  • 47.
    Lipari, P.; Stanev, T. Propagation of multi-TeV muons. Physical Review D 1991, 44, 3543–3554.
  • 48.
    Groom, D.E.; Mokhov, N.V.; Striganov, S.I. Muon stopping power and range tables 10-MeV to 100-TeV. Atom. Data Nucl. Data Tabl. 2001, 78, 183–356.
  • 49.
    Aiello, S.; Akrame, S.E.; Ameli, F.; et al. Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Astropart. Phys. 2019, 111, 100–110.
  • 50.
    Photomultiplier Tubes: Basics and Applications. In Hamamatsu Photonics Technical Manual, 3rd ed.; Hamamatsu Photonics: Shizuoka, Japan, 2007
  • 51.
    Aiello, S.; Albert, A.; Alshamsi, M.; et al. The KM3NeT multi-PMT optical module. J. Instrum. 2022, 17, P07038.
  • 52.
    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; et al The Design and Performance of IceCube DeepCore. Astropart. Phys. 2012, 35, 615–624.
  • 53.
    Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore. Phys. Rev. Lett. 2018, 120, 071801.
  • 54.
    Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. Measurement of the Atmospheric νe Spectrum with IceCube. Phys. Rev. D 2015, 91, 122004.
  • 55.
    IceCube Collaboration. IceCube Neutrino Observatory—Status and Performance Reports. 2023. Available online: https://icecube.wisc.edu/science/data/ (accessed on 10 August 2025).
  • 56.
    Dornic, D.; KM3NeT Collaboration. The KM3NeT neutrino telescope: status and recent results. In Proceedings of the 38th International Cosmic Ray Conference (ICRC 2025), Geneva, Switzerland, 14–24 July 2025.
  • 57.
    ANTARES Collaboration. Position calibration of the KM3NeT detector. PoS 2021, 395, 1127.
  • 58.
    KM3NeT Collaboration. KM3NeT Conceptual Design Report; Technical report; KM3NeT Consortium: Toulon, France, 2008.
  • 59.
    Aartsen, M.G.; Abbasi, R.; Abdou, Y.; et al. Measurement of South Pole ice transparency with the IceCube LED calibration system. Nucl. Instrum. Meth. A 2013, 711, 73–89.
  • 60.
    Abbasi, R.; Ackermann, M.; Adams, J.; et al. In Situ estimation of ice crystal properties at the South Pole using LED calibration data from the IceCube Neutrino Observatory. Cryosphere 2024, 18, 75–102.
  • 61.
    IceCube Collaboration. An improved mapping of ice layer undulations for the IceCube Neutrino Observatory. Proc. Sci. 2023, 444, 975.
  • 62.
    Gaisser, T.K.; Engel, R.; Resconi, E. Cosmic Rays and Particle Physics, 2 ed.; Cambridge University Press: Cambridge, UK, 2016.
  • 63.
    Aartsen, M.G.; Abraham, K.; Ackermann, M.; et al Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data. Astrophys. J. 2016, 833, 3.
  • 64.
    Enberg, R.; Reno, M.H.; Sarcevic, I. Prompt neutrino fluxes from atmospheric charm. Phys. Rev. D 2008, 78, 043005.
  • 65.
    Van Rootselaar, L.; Kardum, L.; Witthaus, L.; et al. Unfolding the Muon Neutrino Spectrum with Eleven Years of IceCube Data. In Proceedings of the 38th International Cosmic Ray Conference (ICRC 2025), Geneva, Switzerland, 14–24 July 2025.
  • 66.
    Aiello, S.; Albert, A.; Alhebsi, A.R.; et al. Measurement of the atmospheric νμ flux with six detection units of KM3NeT/ORCA. Eur. Phys. J. C 2025, 85, 871.
  • 67.
    Abbasi, R.; Ackermann, M.; Adams, J.; et al. The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data. Phys. Rev. D 2021, 104, 022002.
  • 68.
    The IceCube Collaboration. Detection of a particle shower at the Glashow resonance with IceCube. Nature 2021, 591, 220–224.
  • 69.
    Abbasi, R.; Ackermann, M.; Adams, J.; et al. Evidence for a Spectral Break or Curvature in the Spectrum of Astrophysical Neutrinos from 5 TeV–10 PeV. arXiv 2025, arXiv:astro-ph.HE/2507.22233.
  • 70.
    Lyu, Y. Probing the PeV Astrophysical Neutrino Spectral Cutoff Using Downgoing Tracks at IceCube. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2024.
  • 71.
    Abbasi, R.; Ackermann, M.; Adams, J.; et al. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 2022, 378, 538–543.
  • 72.
    IceCube Collaboration. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube- 170922A. Science 2018, 361, eaat1378.
  • 73.
    Abbasi, R.; Ackermann, M.; Adams, J.; et al. Characterization of the astrophysical diffuse neutrino flux using starting track events in IceCube. Phys. Rev. D 2024, 110, 022001.
  • 74.
    Abbasi, R.; Ackermann, M.; Adams, J.; et al. Improved modeling of in-ice particle showers for IceCube event reconstruction. J. Instrum. 2024, 19, P06026.
  • 75.
    Yaez, J.P.; Fedynitch, A. Data-driven muon-calibrated neutrino flux. Phys. Rev. D 2023, 107, 123037.
  • 76.
    Yildizci, E.; Rechav, Z.; Lu, L. Measurement of All Flavor PeV Neutrino Flux using Combined Datasets from IceCube. arXiv 2025, arXiv:2508.05886.
  • 77.
    Abbasi, R.; Ackermann, M.; Adams, J.; et al. Search for Extremely-High-Energy Neutrinos and First Constraints on the Ultrahigh-Energy Cosmic-Ray Proton Fraction with IceCube. Phys. Rev. Lett. 2025, 135, 031001.
  • 78.
    Filippini, F.; KM3NeT Collaboration. Search for a diffuse astrophysical neutrino flux with KM3NeT/ARCA. In Proceedings of the 38th International Cosmic Ray Conference (ICRC 2025), Geneva, Switzerland, 14–24 July 2025.
  • 79.
    van Vliet, A.; Alves Batista, R.; Ho… randel, J.R. Determining the fraction of cosmic-ray protons at ultrahigh energies with cosmogenic neutrinos. Phys. Rev. D 2019, 100, 021302.
  • 80.
    The IceCube Collaboration. Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption. Nature 2017, 551, 596–600.
  • 81.
    Abbasi, R.; Abdou, Y.; Ackermann, M.; et al. IceTop: The surface component of IceCube. Nucl. Instrum. Meth. A 2013, 700, 188–220.
  • 82.
    Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data. Phys. Rev. D 2018, 98, 062003.
  • 83.
    Aartsen, M.G.; Abbasi, R.; Ackermann, M.; et al. Energy Reconstruction Methods in the IceCube Neutrino Telescope. J. Instrum. 2014, 9, P03009.
  • 84.
    Abbasi, R.; Abdou, Y.; Ackermann, M.; et al. An improved method for measuring muon energy using the truncated mean of dE/dx. Nucl. Instrum. Meth. A 2013, 703, 190–198.
  • 85.
    Aartsen, M.G.; Ackermann, M.; Adams, J.; et al. The IceCube Realtime Alert System. Astropart. Phys. 2017, 92, 30–41.
  • 86.
    Blaufuss, E.; Kintscher, T.; Lu, L.; et al. The Next Generation of IceCube Real-time Neutrino Alerts. PoS 2020, ICRC2019, 1021.
  • 87.
    Riehn, F.; Engel, R.; Fedynitch, A.; et al. Hadronic interaction model Sibyll 2.3d and extensive air showers. Phys. Rev. D 2020, 102, 063002.
  • 88.
    Meier, M.; Clark, B.A. A search for extremely-high-energy neutrinos with IceCube and implications for the ultra-high- energy cosmic-ray proton fraction. arXiv 2025, arXiv:astro-ph.HE/2507.07497.
  • 89.
    Abbasi, R.; Ackermann, M.; Adams, J.; et al. Improved Characterization of the Astrophysical Muon-neutrino Flux with 9.5 Years of IceCube Data. Astrophys. J. 2022, 928, 50.
  • 90.
    IceCube Collaboration. IceCube-190331A: IceCube observation of a high-energy neutrino candidate event. In Astron. Telegr. 2019, 12616, 1.
  • 91.
    IceCube Collaboration. Updated directions of IceCube HESE events with the latest ice model using DirectFit. PoS 2023, 444, 1030.
  • 92.
    Basu, V.; Balagopal, V.A.; Karle, A. Measurement of the Diffuse Astrophysical Neutrino Spectrum above a TeV with All Flavor Starting Events in IceCube. arXiv 2025, arXiv:astro-ph.HE/2507.06002.
  • 93.
    Abbasi, R.; Ackermann, M.; Adams, J.; et al. A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory. J. Instrum. 2021, 16, P07041.
  • 94.
    Chirkin, D. Event reconstruction in IceCube based on direct event re-simulation. In Proceedings of the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, 2–9 July 2013.
  • 95.
    Nakos, M.; Rosted, A.; Lu, L. Enhancements to the IceCube Extremely High Energy Neutrino Selection using Graph & Transformer Based Neural Networks. arXiv 2025, arXiv:astro-ph.HE/2507.11774.
  • 96.
    Dunsch, M.; Soedingrekso, J.; Sandrock, A.; et al. Recent Improvements for the Lepton Propagator PROPOSAL. Comput. Phys. Commun. 2019, 242, 132–144.
  • 97.
    Kistler, M.D.; Laha, R. Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance. Phys. Rev. Lett. 2018, 120, 241105.
  • 98.
    Adriani, O.; Aiello, S.; Albert, A.; et al. Ultrahigh-Energy Event KM3-230213A within the Global Neutrino Landscape. Phys. Rev. X 2025, 15, 031016.
  • 99.
    Li, S.W.; Machado, P.; Naredo-Tuero, D.; et al. Clash of the Titans: ultra-high energy KM3NeT event versus IceCube data. arXiv 2025, arXiv:astro-ph.HE/2502.04508.
  • 100.
    Das, S.; Zhang, B.; Razzaque, S.; et al. Cosmic-Ray Constraints on the Flux of Ultra-High-Energy Neutrino Event KM3-230213A. arXiv 2025, arXiv:astro-ph.HE/2504.10847.
  • 101.
    Muzio, M.S.; Yuan, T.; Lu, L. Emergence of a neutrino flux above 5 PeV and implications for ultrahigh energy cosmic rays. arXiv 2025, arXiv:astro-ph.HE/2502.06944.
  • 102.
    Das, S.; Razzaque, S.; Gupta, N. Modeling the spectrum and composition of ultrahigh-energy cosmic rays with two populations of extragalactic sources. Eur. Phys. J. C 2021, 81, 59.
  • 103.
    Kuznetsov, M.Y.; Petrov, N.A.; Savchenko, Y.S. Ultra-high energy event KM3-230213A as a cosmogenic neutrino in light of minimal UHECR flux models. arXiv 2025, arXiv:astro-ph.HE/2509.09590.
  • 104.
    Zhang, Q.; Huang, T.Q.; Li, Z. Cosmogenic Neutrino Point Source and KM3-230213A. Astrophys. J. 2025, 990, 78.
  • 105.
    Adriani, O.; Aiello, S.; Albert, A.; et al. On the Potential Cosmogenic Origin of the Ultra-high-energy Event KM3-230213A. Astrophys. J. Lett. 2025, 984, L41.
  • 106.
    Schneider, A.; Kamp, N.W.; Wen, A.Y. SIREN: An Open Source Neutrino Injection Toolkit. arXiv 2024, arXiv:hep- ex/2406.01745.
  • 107.
    Chirkin, D.; Rhode, W. Muon Monte Carlo: A High-precision tool for muon propagation through matter. arXiv 2004, arXiv:hep-ph/0407075.
  • 108.
    Pierre Auger Collaboration. Latest results from the searches for ultra-high-energy photons and neutrinos at the Pierre Auger Observatory. PoS 2023, 444, 1488.
  • 109.
    Aab, A. Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory. JCAP 2019, 11, 004.
  • 110.
    Lu, L. Multi-flavour PeV neutrino search with IceCube. PoS 2018, ICRC2017, 1002.
  • 111.
    Abreu, P.; Aglietta, M.; Albury, J.M.; et al. The energy spectrum of cosmic rays beyond the turn-down around 1017 eV as measured with the surface detector of the Pierre Auger Observatory. Eur. Phys. J. C 2021, 81, 966.
  • 112.
    Aab, A.; Abreu, P.; Aglietta, M.; et al. Depth of Maximum of Air-Shower Profiles above 1017.8eV Measured with the Fluorescence Detector of the Pierre Auger Observatory and Mass Composition Implications. PoS 2023, ICRC2023, 319.
  • 113.
    Muzio, M.S.; Unger, M.; Farrar, G.R. Progress towards characterizing ultrahigh energy cosmic ray sources. Phys. Rev. D 2019, 100, 103008.
  • 114.
    Muzio, M.S.; Farrar, G.R.; Unger, M. Probing the environments surrounding ultrahigh energy cosmic ray accelerators and their implications for astrophysical neutrinos. Phys. Rev. D 2022, 105, 023022.
  • 115.
    Naab, R.; Ganster, E.; Zhang, Z. Measurement of the astrophysical diffuse neutrino flux in a combined fit of IceCube’s high energy neutrino data. PoS 2023, ICRC2023, 1064.
  • 116.
    Zaborov, D. Neutrino astronomy at Lake Baikal. arXiv 2024, arXiv:astro-ph.HE/2412.00164.
  • 117.
    IceCube-Gen2 Collaboration. The IceCube-Gen2 Neutrino Observatory; Technical Design Report, Parts I, II, and III; University of Wisconsin–Madison: Madison, WI, USA, 2024.
  • 118.
    Olinto, A.V.; Krizmanic, J.; Adams, J.H.; et al. The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) observatory. J. Cosmol. Astropart. Phys. 2021, 6, 7.
  • 119.
    Allison, P.; Archambault, S.; Beatty, J.J.; et al. Constraints on the diffuse flux of ultrahigh energy neutrinos from four years of Askaryan Radio Array data in two stations. Phys. Rev. D 2020, 102, 043021.
  • 120.
    Aguilar, J.A.; Allison, P.; Beatty, J.J.; et al. Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G). J. Instrum. 2021, 16, P03025.
  • 121.
    Álvarez-Muñiz, J.; Alves, Batista, R.; Balagopal, V.; A.; et al. The Giant Radio Array for Neutrino Detection (GRAND): Science and Design. Sci. China Phys. Mech. Astron. 2020, 63, 219501.
  • 122.
    Wissel, S.; Romero-Wolf, A.; Schoorlemmer, H.; et al. Prospects for high-elevation radio detection of >100 PeV tau neutrinos. J. Cosmol. Astropart. Phys. 2020, 11, 065.
  • 123.
    Romero-Wolf, A.; Alvarez-Mu Neutrinos. arXiv 2020, arXiv:astro-ph.IM/2002.06475.
  • 124.
    Gorham, P.W.; Allison, P.; Banerjee, O.; et al. Constraints on the ultrahigh-energy cosmic neutrino flux from the fourth flight of ANITA. Phys. Rev. D 2019, 99, 122001.
  • 125.
    Abarr, Q.; Allison, P.; Yebra, J.A.; et al. The Payload for Ultrahigh Energy Observations (PUEO): A white paper. J. Instrum. 2021, 16, P08035.
  • 126.
    Buitink, S.; Bacelar, J.; Braun, R.; et al. The NuMoon experiment: first results. arXiv 2008, arXiv:astro-ph/0808.1878.
  • 127.
    Brown, A.M.; Bagheri, M.; Doro, M.; et al. Trinity: an imaging air Cherenkov telescope to search for Ultra-High-Energy neutrinos. PoS 2021, ICRC2021, 1179.
  • 128.
    Prohira, S.; De Vries, K.D.; Allison, P.; et al. Observation of Radar Echoes From High-Energy Particle Cascades. Phys. Rev. Lett. 2020, 124, 091101.
  • 129.
    Ackermann, M.; Bustamante, M.; Lu, L.; et al. High-energy and ultra-high-energy neutrinos: A Snowmass white paper. J. High Energy Astrophys. 2022, 36, 55–110.
  • 130.
    Anker, A.; Barwick, S.W.; Bernhoff, H.; et al. A search for cosmogenic neutrinos with the ARIANNA test bed using 4.5 years of data. J. Cosmol. Astropart. Phys. 2020, 3, 53.
  • 131.
    Aguilar, J.A.; Allison, P.; Beatty, J.J.; et al. The Radio Neutrino Observatory Greenland (RNO-G). PoS 2021, 395, 001.
  • 132.
    Fang, K.; Murase, K. Linking High-Energy Cosmic Particles by Black Hole Jets Embedded in Large-Scale Structures. Nature Phys. 2018, 14, 396.
  • 133.
    Biehl, D.; Boncioli, D.; Lunardini, C.; et al. Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies. Sci. Rep. 2018, 8, 10828.
Share this article:
How to Cite
Lu, L.; Yuan, T. Extreme High-Energy Neutrinos: IceCube vs. KM3NeT . Highlights in High-Energy Physics 2025, 1 (2), 19. https://doi.org/10.53941/hihep.2025.100019.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.