2509001629
  • Open Access
  • Article

Reducing the Greenhouse Gas Usage from Particle Detection Systems: Status and Perspectives

  • Roberto Guida

Received: 05 Sep 2025 | Revised: 25 Sep 2025 | Accepted: 29 Sep 2025 | Published: 30 Sep 2025

Abstract

The gaseous particle detector community is nowadays facing the problem of minimizing usage and, in the long term, finding replacement for fluorinated gases used in several detector technologies. Fluorinated gases like C2H2F4, SF6, CF4, C4F10, ... are used because they allow achieving detector performance needed for data taking in presence of hostile radiation background like the one present at the Large Hadron Collider experiments. However, fluorinated gases are nowadays subject to increasingly stringent regulations that aim to ban their use in the industrial world as soon as new technologies or ecological alternatives are developed. Unfortunately, the application of new ecofriendly gases developed as refrigerant fluid or high voltage insulation medium to particle detectors is not straightforward. To optimize the usage of fluorinated gases and with the idea of preparing the long-term operation of gaseous detectors different strategies have been developed at CERN. These strategies are based on extensive use of gas recirculation systems (both for large detector systems and laboratory applications), the development of gas recuperation plants and the search for new ecofriendly mixtures for existing and future gaseous detectors.

References 

  • 1.
    “Regulation (EU) No 517/2014 of the European Parliament and of the Council on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006”. Available online: https://eur-lex.europa.eu/eli/reg/2014/517/oj/eng (accessed on 30 August 2025)
  • 2.
    Guida, R.; Mandelli, B. R&D for the optimization of the use of greenhouse gases in the LHC particle detection systems. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 958, 162135. https://doi.org/10.1016/j.nima.2019.04.089.
  • 3.
    Guida, R.; Capeans, M.; Hahn, F.; et al. The gas systems for the LHC experiments. In Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, Korea, 27 October 2013–2 November 2013. https://doi.org/10.1109/NSSMIC.2013.6829415.
  • 4.
    Mandelli, B.; Capeans, M.; Guida, R.; et al. Validation of the new filters configuration for the RPC gas systems at LHC experiments. In Proceedings of the XI Workshop on Resistive Plate Chambers and Related Detectors. SISSA Medialab, Rome, Italy, 5–10 February 2012. https://doi.org/10.22323/1.159.0029.
  • 5.
    Guida, R.; Busato, M.; Mandelli, B.; et al. Optimization strategies for the greenhouse gas consumption of the Resistive Plate Chamber detectors at the CERN LHC experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1055, 168444. https://doi.org/10.1016/j.nima.2023.168444.
  • 6.
    Guida, R.; Mandelli, B. A portable gas recirculation unit for gaseous detectors. J. Instrum. 2017, 12, T10002. https://doi.org/10.1088/1748-0221/12/10/T10002.
  • 7.
    Guida, R.; EN, EP and AIDA GIF++ Collaboration. GIF++: A new CERN Irradiation Facility to test large-area particle detectors for the High-Luminosity LHC program. PoS 2016, 2016, 260. https://doi.org/10.22323/1.282.0260.
  • 8.
    Rigoletti, G.; Guida, R.; Mandelli, B. Gas recirculation systems for RPC detectors: From LHC experiments to laboratory set-ups. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1049, 168095. https://doi.org/10.1016/j.nima.2023.168095.
  • 9.
    Birchby, D.; Dubey, J.; Johansen, B.; et al. Support Contract for an Evaluation and Impact Assessment for Amending Regulation (EU) No 517/2014 on Fluorinated Greenhouse Gases; Öko-Recherche: Frankfurt am Main, Germany, 2022. Available online: https://www.oekorecherche.de/en/node/286 (accessed on 30 August 2025).
  • 10.
    Warncke, K. Insight into the European F-Gas Regulation; Öko-Recherche: Frankfurt am Main, Germany, 2025. Available online: https://indico.cern.ch/event/1543925/contributions/6554195/ (accessed on 30 August 2025).
  • 11.
    Capeans, M.; Guida, R.; Haider, S.; et al. Commissioning of the CF4 recuperation plant for the Cathode Strip Chambers detector at the CERN Compact Muon Solenoid experiment. In Proceedings of the 2011 IEEE Nuclear Science Symposium Conference Record, Valencia, Spain, 23–29 October 2011. https://doi.org/10.1109/NSSMIC.2011.6154690.
  • 12.
    Guida, R.; Capeans, M.; Hahn, F.; et al. Results from the first operational period of the CF4 recuperation plant for the Cathode Strip Chambers detector at the CERN Compact Muon Solenoid experiment. In Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, USA, 27 October 2012–3 November 2012. https://doi.org/10.1109/NSSMIC.2012.6551286.
  • 13.
    Arena, M.; Guida, R.; Mandelli, B.; et al. Recuperation systems for fluorinated gases at the CERN LHC Experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2024, 1068, 169789. https://doi.org/10.1016/j.nima.2024.169789.
  • 14.
    Arena, M.; Guida, R.; Juks, S.; et al. Towards more eco-friendly gaseous detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2024, 1068, 169784. https://doi.org/10.1016/j.nima.2024.169784.
  • 15.
    ECHA. Updated PFAS Restriction Proposal. 2025. Available online: https://echa.europa.eu/-/echa-publishes-updated-pfas-restriction-proposal (accessed on 30 August 2025).
  • 16.
    ECHA. ECHA to Consult on PFAS Draft Opinion in Spring 2026. 2025. Available online: https://echa.europa.eu/-/echa-to-consult-on-pfas-draft-opinion-in-spring-2026 (accessed on 30 August 2025).
  • 17.
    Rigoletti, G.; Guida, R.; Mandelli, B. Performance studies of RPC detectors operated with C2H2F4 and CO2 gas mixtures. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1049, 168088. https://doi.org/10.1016/j.nima.2023.168088.
  • 18.
    Guida, R.; Capeans, M.; Mandelli, B. Characterization of RPC operation with new environmental friendly mixtures for LHC application and beyond. J. Instrum. 2016, 11, C07016. https://doi.org/10.1088/1748-0221/11/07/C07016.
  • 19.
    Quaglia, L.; Abbrescia, M.; Aielli, G.; et al. Exploring Eco-Friendly Gas Mixtures for Resistive Plate Chambers: A Comprehensive Study on Performance and Aging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2024, 1068, 169747. https://doi.org/10.1016/j.nima.2024.169747.
  • 20.
    Guida, R.; Mandelli, B.; Rigoletti, G. Performance studies of RPC detectors with new environmentally friendly gas mixtures in presence of LHC-like radiation background. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 958, 162073. https://doi.org/10.1016/j.nima.2019.04.027.
  • 21.
    Guida, R.; Mandelli, B.; Rigoletti, G. Measurements of fluoride production in Resistive Plate Chambers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1054, 168393. https://doi.org/10.1016/j.nima.2023.168393.
  • 22.
    Li, Y.; Zhang, X.; Li, Y.; et al. Interaction Mechanism between the C4F7N–CO2 Gas Mixture and the EPDM Seal Ring. ACS Omega 2020, 5, 5911–5920. https://doi.org/10.1021/acsomega.9b04183.
  • 23.
    Xu, M.; Yan, J.; Liu, Z.; et al. Simulation of the decomposition pathways and products of Perfluoronitrile C4F7N (3M:Novec 4710). In Proceedings of the 2017 4th International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST), Xi’an, China, 22–25 October 2017. https://doi.org/10.1109/ICEPE-ST.2017.8188845.
  • 24.
    Proto, G.; Kortner, O. Replacing SF6 in resistive plate chamber detectors for HL-LHC experiments and beyond. J. Instrum. 2025, 20, P06031. https://doi.org/10.1088/1748-0221/20/06/P06031.
  • 25.
    ePIC Collaboration. Available online: https://www.bnl.gov/eic/epic.php (accessed on 30 August 2025).
  • 26.
    Bortfeldt, J.; Brunbauer, F.; David, C.; et al. PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 903, 317–325. https://doi.org/10.1016/j.nima.2018.04.033.
  • 27.
    Lyshchuk, H.; Rijn, M.V.; Paul, A.; et al. Electron-induced dissociation of HFO1234ze: dissociative electron attachment and dissociative ionization. Phys. Scr. 2025, 100, 055409. https://doi.org/10.1088/1402-4896/adcb77.
  • 28.
    Ebara Gas Disposal Systems. Available online: http://www.ebara-pm.eu/gas-abatement.html (accessed on 30 August 2025).
  • 29.
    Edwards Gas Disposal Systems. Available online: https://www.edwardsvacuum.com/en-uk/semiconductor/our-products/abatement (accessed on 24 August 2025).
  • 30.
    Aleksandrov, A.; Ball, A.; Colaleo, A.; et al. Reduction of Greenhouse Gas Emissions and Consumption at the CMS Experiment, CERN CMS Internal Technical Evaluation Report. 2019.
  • 31.
    CERN Environment Report. 20224. Available online: https://doi.org/10.25325/CERN-Environment-2023-003 (accessed on 25 August 2025).
Share this article:
How to Cite
Guida, R. Reducing the Greenhouse Gas Usage from Particle Detection Systems: Status and Perspectives. Highlights in High-Energy Physics 2025, 1 (2), 20. https://doi.org/10.53941/hihep.2025.100020.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.