2512002663
  • Open Access
  • Review

Cosmological Standard Timers: Framework and Perspectives

  • Qianhang Ding

Received: 14 Nov 2025 | Revised: 15 Dec 2025 | Accepted: 29 Dec 2025 | Published: 31 Dec 2025

Abstract

Cosmological standard timers (CSTs) are novel cosmological probes that aim to measure the cosmic time-redshift relation, which quantifies the size of the Universe with respect to cosmic time and further constrains cosmic evolution. With an initial statistical distribution of the dynamical systems as a standard reference, we can independently measure cosmic time from the time evolution of this statistical distribution. By combining the measured cosmic time with redshift extracted from observables, we can construct the cosmic time-redshift relation. Following this idea, we develop the framework of CSTs and discuss their perspectives in potential dynamical systems such as dark matter halo mass function, primordial black hole (PBH) mass function and PBH binaries as illustrative examples to demonstrate their feasibility in constructing the cosmic time-redshift relation.

References 

  • 1.

    Gamow, G. The Origin of Elements and the Separation of Galaxies. Phys. Rev. 1948, 74, 505–506.

  • 2.

    Alpher, R.A.; Herman, R.C. On the Relative Abundance of the Elements. Phys. Rev. 1948, 74, 1737–1742.

  • 3.

    Alpher, R.A.; Herman, R.C. Remarks on the Evolution of the Expanding Universe. Phys. Rev. 1949, 75, 1089–1095.

  • 4.

    Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6.

  • 5.

    Peebles, P.J.E. Large scale background temperature and mass fluctuations due to scale invariant primeval perturbations. Astrophys. J. Lett. 1982, 263, L1–L5.

  • 6.

    Perlmutter, S.; Aldering, G.; Goldhaber, G.; et al. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586.

  • 7.

    Riess, A.G.; Filippenko, A.V.; Challis, P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038.

  • 8.

    Rubin, V.C.; Ford, W.K., Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 1970, 159, 379–403.

  • 9.

    Faber, S.M.; Gallagher, J.S. Masses and mass-to-light ratios of galaxies. Ann. Rev. Astron. Astrophys. 1979, 17, 135–183.

  • 10.

    Turner, M.S.; Steigman, G.; Krauss, L.M. Flatness of the Universe: Reconciling Theoretical Prejudices with Observational Data. Phys. Rev. Lett. 1984, 52, 2090–2093.

  • 11.

    Frenk, C.S.; White, S.D.M.; Efstathiou, G.; et al. Cold dark matter, the structure of galactic haloes and the origin of the Hubble sequence. Nature 1985, 317, 595–597.

  • 12.

    Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An update. New Astron. Rev. 2022, 95, 101659.

  • 13.

    Abdalla, E.; Abell´an, G.F.; Aboubrahim, A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 2022, 34, 49–211.

  • 14.

    Di Valentino, E.; Mena, O.; Pan, S.; et al. In the realm of the Hubble tension—A review of solutions. Class. Quant. Grav. 2021, 38, 153001.

  • 15.

    Nunes, R.C.; Vagnozzi, S. Arbitrating the S8 discrepancy with growth rate measurements from redshift-space distortions. Mon. Not. R. Astron. Soc. 2021, 505, 5427–5437.

  • 16.

    Secrest, N.J.; von Hausegger, S.; Rameez, M.; et al. A Test of the Cosmological Principle with Quasars. Astrophys. J. Lett. 2021, 908, L51.

  • 17.

    Secrest, N.J.; von Hausegger, S.; Rameez, M.; et al. A Challenge to the Standard Cosmological Model. Astrophys. J. Lett. 2022, 937, L31.

  • 18.

    Freedman, W.L. Cosmology at a Crossroads. Nat. Astron. 2017, 1, 0121.

  • 19.

    Rameez, M.; Sarkar, S. Is there really a Hubble tension? Class. Quant. Grav. 2021, 38, 154005.

  • 20.

    Poulin, V.; Smith, T.L.; Karwal, T.; et al. Early Dark Energy Can Resolve The Hubble Tension. Phys. Rev. Lett. 2019, 122, 221301.

  • 21.

    Bernal, J.L.; Verde, L.; Riess, A.G. The trouble with H0. J. Cosmol. Astropart. Phys. 2016, 10, 019.

  • 22.

    Lin, M.X.; Benevento, G.; Hu, W.; et al. Acoustic Dark Energy: Potential Conversion of the Hubble Tension. Phys. Rev. D 2019, 100, 063542.

  • 23.

    Kenworthy, W.D.; Scolnic, D.; Riess, A. The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant. Astrophys. J. 2019, 875, 145.

  • 24.

    Ding, Q.; Nakama, T.; Wang, Y. A gigaparsec-scale local void and the Hubble tension. Sci. China Phys. Mech. Astron. 2020, 63, 290403.

  • 25.

    Vagnozzi, S. New physics in light of the H0 tension: An alternative view. Phys. Rev. D 2020, 102, 023518.

  • 26.

    Fung, L.W.; Li, L.; Liu, T.; et al. The Hubble Constant in the Axi-Higgs Universe. arXiv 2021, arXiv:astroph.CO/2105.01631.

  • 27.

    Cai, T.; Ding, Q.; Wang, Y. Reconciling cosmic dipolar tensions with a gigaparsec void. Phys. Rev. D 2025, 111, 103502.

  • 28.

    Bullock, J.S.; Boylan-Kolchin, M. Small-Scale Challenges to the ΛCDM Paradigm. Ann. Rev. Astron. Astrophys. 2017, 55, 343–387.

  • 29.

    Karim, M.A.; Aguilar, J.; Ahlen, S.; et al. DESI DR2 results. II. Measurements of baryon acoustic oscillations and cosmological constraints. Phys. Rev. D 2025, 112, 083515.

  • 30.

    Fernie, J.D. The Period-Luminosity Relation: A Historical Review. Publ. Astron. Soc. Pac. 1969, 81, 707.

  • 31.

    Scolnic, D.M.; Jones, D.O.; Rest, A.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101.

  • 32.

    Beutler, F.; Blake, C.; Colless, M.; et al. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc. 2011, 416, 3017–3032.

  • 33.

    Ross, A.J.; Samushia, L.; Howlett, C.; et al. The clustering of the SDSS DR7 main Galaxy sample—I. A 4 per cent distance measure at z = 0.15. Mon. Not. R. Astron. Soc. 2015, 449, 835–847.

  • 34.

    Font-Ribera, A.; Kirkby, D.; Miralda-Escud´e, J.; et al. Quasar-Lyman α Forest Cross-Correlation from BOSS DR11: Baryon Acoustic Oscillations. JCAP 2014, 05, 027.

  • 35.

    Delubac, T.; Bautista, J.E.; Rich, J.; et al. Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars. Astron. Astrophys. 2015, 574, A59.

  • 36.

    Alam, S.; Ata, M.; Bailey, S.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617–2652.

  • 37.

    Schutz, B.F. Determining the Hubble Constant from Gravitational Wave Observations. Nature 1986, 323, 310–311.

  • 38.

    Holz, D.E.; Hughes, S.A. Using gravitational-wave standard sirens. Astrophys. J. 2005, 629, 15–22.

  • 39.

    Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101.

  • 40.

    The LIGO Scientific Collaboration; The Virgo Collaborationl; The 1M2H Collaboration; et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 2017, 551, 85–88.

  • 41.

    Cai, Y.F.; Chen, C.; Ding, Q.; et al. Cosmological Standard Timers from Unstable Primordial Relics. arXiv 2021, arXiv:astro-ph.CO/2112.10422.

  • 42.

    Ding, Q. Toward cosmological standard timers in primordial black hole binaries. Phys. Rev. D 2023, 108, 023514.

  • 43.

    Cai, Y.F.; Chen, C.; Ding, Q.; et al. Ultrahigh-energy Gamma Rays and Gravitational Waves from Primordial Exotic Stellar Bubbles. Eur. Phys. J. C 2022, 82, 464.

  • 44.

    Ding, Q. Detectability of primordial black hole binaries at high redshift. Phys. Rev. D 2021, 104, 043527.

  • 45.

    Hu, W.; Sawicki, I. Models of f(R) Cosmic Acceleration that Evade Solar-System Tests. Phys. Rev. D 2007, 76, 064004.

  • 46.

    Yang, Y.; Ren, X.; Wang, Q.; et al. Quintom cosmology and modified gravity after DESI 2024. Sci. Bull. 2024, 69, 2698–2704.

  • 47.

    Leavitt, H.S. 1777 variables in the Magellanic Clouds. Harv. Obs. Ann. 1908, 60, 87–108.

  • 48.

    Leavitt, H.S.; Pickering, E.C. Periods of 25 Variable Stars in the Small Magellanic Cloud. Harv. Obs. Circ. 1912, 173, 1–3.

  • 49.

    Branch, D.; Tammann, G.A. Type ia supernovae as standard candles. Ann. Rev. Astron. Astrophys. 1992, 30, 359–389.

  • 50.

    Phillips, M.M. The absolute magnitudes of Type IA supernovae. Astrophys. J. Lett. 1993, 413, L105–L108.

  • 51.

    Baade, W.; Zwicky, F. On Super-Novae. Proc. Nat. Acad. Sci. USA 1934, 20, 254–259.

  • 52.

    Baade, W. The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula. Astrophys. J. 1944, 100, 137–146.

  • 53.

    Lee, M.G.; Freedman, W.L.; Madore, B.F. The Tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies. Astrophys. J. 1993, 417, 553.

  • 54.

    Pigott, E. VII. Observations of a new variable star. In a letter from Edward Pigott, Esq. to Sir. HC Englefield, Bart. FRS and AS. Philos. Trans. R. Soc. Lond. 1785, 75, 127–136.

  • 55.

    Wallerstein, G. The Cepheids of Population II and related stars. Publ. Astron. Soc. Pac. 2002, 114, 689.

  • 56.

    Soszynski, I.; Udalski, A.; Szymanski, M.K.; et al. The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. II. Type II Cepheids and Anomalous Cepheids in the Large Magellanic Cloud. Acta Astron. 2008, 58, 293.

  • 57.

    Smolec, R.; Moskalik, P. Double-mode classical Cepheid models—revisited. Acta Astron. 2008, 58, 233.

  • 58.

    Ferrarese, L.; Freedman, W.L.; Hill, R.J.; et al. The extragalactic distance scale key project. Iv. The discovery of Cepheids and a new distance to M100 using the Hubble Space Telescope. Astrophys. J. 1996, 464, 568.

  • 59.

    Hubble, E. A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. USA 1929, 15, 168–173.

  • 60.

    Riess, A.G.; Casertano, S.; Yuan, W.; et al. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astrophys. J. 2019, 876, 85.

  • 61.

    Kellermann, K.I. The cosmological deceleration parameter estimated from the angular-size/redshift relation for compact radio sources. Nature 1993, 361, 134–136.

  • 62.

    Gurvits, L. Apparent milliarcsecond sizes of active galactic nuclei and the geometry of the universe. Astrophys. J. 1994, 425, 442–449.

  • 63.

    Buchalter, A.; Helfand, D.J.; Becker, R.H.; et al. Constraining ω0 with the angular size-redshift relation of double-lobed quasars in the first survey. Astrophys. J. 1998, 494, 503.

  • 64.

    Bassett, B.A.; Hlozek, R. Baryon Acoustic Oscillations. In Dark Energy: Observational and Theoretical Approaches; Cambridge University Press: Cambridge, UK, 2009.

  • 65.

    Peebles, P. The Large-Scale Structure of the Universe; Princeton University Press: Princeton, NJ, USA, 1980.

  • 66.

    Eisenstein, D.J.; Zehavi, I.; Hogg, D.W.; et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 2005, 633, 560–574.

  • 67.

    Bautista, J.E.; Guy, J.; Rich, J.; et al. Measurement of baryon acoustic oscillation correlations at z = 2.3 with SDSS DR12 Lyα-Forests. Astron. Astrophys. 2017, 603, A12.

  • 68.

    Des Bourboux, H.D.M., Le Goff, J.M., Blomqvist, M.; et al. Baryon acoustic oscillations from the complete SDSS-III Lyα-quasar cross-correlation function at z = 2.4. Astron. Astrophys. 2017, 608, A130.

  • 69.

    Blomqvist, M.; Des Bourboux, H.D.M.; de Sainte Agathe, V.; et al. Baryon acoustic oscillations from the cross-correlation of Lyα absorption and quasars in eBOSS DR14. Astron. Astrophys. 2019, 629, A86.

  • 70.

    de Sainte Agathe, V.; Ball, C.; Des Bourboux, H.D.M.; et al. Baryon acoustic oscillations at z = 2.34 from the correlations of Lyα absorption in eBOSS DR14. Astron. Astrophys. 2019, 629, A85.

  • 71.

    Cuceu, A.; Farr, J.; Lemos, P.; et al. Baryon Acoustic Oscillations and the Hubble Constant: Past, Present and Future. J. Cosmol. Astropart. Phys. 2019, 10, 044.

  • 72.

    Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102.

  • 73.

    Abbott, B.P.; Abbott, R.; Adhikari, R.; et al. LIGO: The Laser interferometer gravitational-wave observatory. Rep. Prog. Phys. 2009, 72, 076901.

  • 74.

    Poisson, E.; Will, C.M. Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian wave forms. Phys. Rev. D 1995, 52, 848–855.

  • 75.

    Finn, L.S.; Chernoff, D.F. Observing binary inspiral in gravitational radiation: One interferometer. Phys. Rev. D 1993, 47, 2198–2219.

  • 76.

    Cutler, C.; Flanagan, E.E. Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form? Phys. Rev. D 1994, 49, 2658–2697.

  • 77.

    Ding, Q. Merger rate of primordial black hole binaries as a probe of the Hubble parameter. Phys. Rev. D 2024, 110, 063542.

  • 78.

    Fung, L.W.H.; Broadhurst, T.; Smoot, G.F. Pure gravitational wave estimation of Hubble’s constant using neutron star–black hole mergers. Mon. Not. R. Astron. Soc. 2025, 538, 711–725.

  • 79.

    Goldstein, A.; Veres, P.; Burns, E.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophys. J. Lett. 2017, 848, L14.

  • 80.

    Soares-Santos, M.; Palmese, A.; Hartley, W.; et al. First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophys. J. Lett. 2019, 876, L7.

  • 81.

    Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophys. J. 2021, 909, 218.

  • 82.

    Kawamura, S., Nakamura, T., Ando, M.; et al. The Japanese space gravitational wave antenna DECIGO. Class. Quantum Gravity 2006, 23, S125–S132.

  • 83.

    Bender, P.; Brillet, A.; Ciufolini, I.; et al. Lisa Pre-Phase a Report; Max-Planck Institut f¨ur Quantenoptik: Garching bei M¨unchen, Germany, 1998.

  • 84.

    Jimenez, R.; Loeb, A. Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 2002, 573, 37–42.

  • 85.

    Moresco, M. Measuring the expansion history of the Universe with cosmic chronometers. arXiv 2024, arXiv:astroph.CO/2412.01994.

  • 86.

    Tinker, J.L.; Kravtsov, A.V.; Klypin, A.; et al. Toward a halo mass function for precision cosmology: The Limits of universality. Astrophys. J. 2008, 688, 709–728.

  • 87.

    Fakhouri, O.; Ma, C.P.; Boylan-Kolchin, M. The merger rates and mass assembly histories of dark matter haloes in the two Millennium simulations. Mon. Not. R. Astron. Soc. 2010, 406, 2267–2278.

  • 88.

    Vikhlinin, A.; Kravtsov, A.V.; Burenin, R.A.; et al. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints. Astrophys. J. 2009, 692, 1060–1074.

  • 89.

    Ade, P.A.R., Aghanim, N., Arnaud, M.; et al. Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts. Astron. Astrophys. 2016, 594, A24.

  • 90.

    Umetsu, K. Cluster—galaxy weak lensing. Astron. Astrophys. Rev. 2020, 28, 7.

  • 91.

    Johnston, D.E.; Sheldon, E.S.; Wechsler, R.H.; et al. Cross-correlation Weak Lensing of SDSS galaxy Clusters II: Cluster Density Profiles and the Mass–Richness Relation. arXiv 2007, arXiv:astro-ph/0709.1159.

  • 92.

    Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; et al. Planck 2013 results. XX. Cosmology from Sunyaev—Zeldovich cluster counts. Astron. Astrophys. 2014, 571, A20.

  • 93.

    Ali-Ha¨ımoud, Y.; Kovetz, E.D.; Kamionkowski, M. Merger rate of primordial black-hole binaries. Phys. Rev. D 2017, 96, 123523.

  • 94.

    Sasaki, M.; Suyama, T.; Tanaka, T.; et al. Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. Phys. Rev. Lett. 2016, 117, 061101.

  • 95.

    Franciolini, G.; Cotesta, R.; Loutrel, N.; et al. How to assess the primordial origin of single gravitational-wave events with mass, spin, eccentricity, and deformability measurements. Phys. Rev. D 2022, 105, 063510.

  • 96.

    Peters, P.C. Gravitational Radiation and the Motion of Two Point Masses. Phys. Rev. 1964, 136, B1224–B1232.

  • 97.

    Somerville, R.S.; Dave, R. Physical Models of Galaxy Formation in a Cosmological Framework. Ann. Rev. Astron. Astrophys. 2015, 53, 51–113.

  • 98.

    Carr, B.; Kohri, K.; Sendouda, Y.; et al. Constraints on Primordial Black Holes. arXiv 2020, arXiv:astro-ph.CO/2002.12778.

  • 99.

    Ding, Q.; He, M.; Takhistov, V.; et al. Dark-matter-independent orbital decay bounds on ultralight bosons from OJ287. Phys. Rev. D 2025, 112, 103051.

  • 100.

    Ding, Q.; He, M.; Zhu, H.Y. Extracting Properties of Dark Dense Environment Around Black Holes From Gravitational Waves. arXiv 2025, arXiv:gr-qc/2510.27424.

  • 101.

    Moresco, M.; Amati, L.; Amendola, L.; et al. Unveiling the Universe with emerging cosmological probes. Living Rev. Relativ. 2022, 25, 6.

  • 102.

    Gardner, J.P.; Mather, J.C.; Clampin, M.; et al. The James Webb Space Telescope. Space Sci. Rev. 2006, 123, 485

  • 103.

    Acernese, F.; Agathos, M.; Agatsuma, K.; et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quant. Grav. 2015, 32, 024001.

  • 104.

    Akutsu, T.; Ando, M.; Arai, K.; et al. KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector. Nat. Astron. 2019, 3, 35–40.

  • 105.

    Abac, A., Abramo, R., Albanesi, S.; et al. The Science of the Einstein Telescope. arXiv 2025, arXiv:gr-qc/2503.12263.

  • 106.

    Phinney, E.S. A Practical theorem on gravitational wave backgrounds. arXiv 2001, arXiv:astro-ph/0108028.

Share this article:
How to Cite
Ding, Q. Cosmological Standard Timers: Framework and Perspectives. Highlights in High-Energy Physics 2025, 1 (3), 21. https://doi.org/10.53941/hihep.2025.100021.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.