- 1.
Ristic, B.; Angley, D.; Moran, B.; et al. Autonomous multi-robot search for a hazardous source in a turbulent environment. Sensors 2017, 17, 918.
- 2.
Li, B.; Zhu, Y.; Wang, Z.; et al. Use of multi-rotor unmanned aerial vehicles for radioactive source search. Remote Sens. 2018, 10, 728.
- 3.
Luo, M.; Huo, J.; Liu, M.; et al. Distributed collaboration: Cognitive difference and collaborative decision for multi-robot radioactive source search. Ann. Nucl. Energy 2024, 196, 110210.
- 4.
Liu, M.; Lin, R.; Yang, M.; et al. Active disturbance rejection motion control of spherical robot with parameter tuning. Ind. Robot Int. J. Robot. Res. Appl. 2022, 49, 332–343.
- 5.
Ni, J.; Shi, P. Adaptive neural network fixed-time leader–follower consensus for multiagent systems with constraints and disturbances. IEEE Trans. Cybern. 2020, 51, 1835–1848.
- 6.
Moreira, M.S.M.; Villa, D.K.D.; Sarcinelli-Filho, M. Controlling a Virtual Structure Involving a UAV and a UGV for Warehouse Inventory. J. Intell. Robot. Syst. 2024, 110, 121.
- 7.
Lee, G.; Chwa, D. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance. Intell. Serv. Robot. 2018, 11, 127–138.
- 8.
Ma, N.; Cao, Y. Consensus-based distributed formation control for coordinated battle system of manned/unmanned aerial vehicles. Trans. Inst. Meas. Control 2024, 46, 3–14.
- 9.
Chen, H.; Chen, H.; Qiang, L. Multi-UAV 3D formation path planning based on improved artificial potential field. J. Syst. Simul. 2020, 32, 414–420.
- 10.
Li, Y.; Dong, S.; Li, K. Fuzzy adaptive finite-time event-triggered control of time-varying formation for nonholonomic multirobot systems. IEEE Trans. Intell. Veh. 2023, 9, 725–737.
- 11.
Dong, X.; Zhou, Y.; Ren, Z.; et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans. Ind. Electron. 2016, 64, 5014–5024.
- 12.
Lin, Z.; Chen, Z.; Fu, M. A linear control approach to distributed multi-agent formations in d-dimensional space. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013; pp. 6049–6054.
- 13.
Zhao, S. Affine formation maneuver control of multiagent systems. IEEE Trans. Autom. Control 2018, 63, 4140–4155.
- 14.
LaValle, S.M.; Kuffner, J.J. Rapidly-exploring random trees: Progress and prospects. In Algorithmic and Computational Robotics; CRC Press: Boca Raton, FL, USA, 2001; pp. 303–307.
- 15.
Karaman, S.; Walter, M.R.; Perez, A.; et al. Anytime motion planning using the RRT. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1478–1483.
- 16.
Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), San Francisco, CA, USA, 24–28 April 2000; pp. 995–1001.
- 17.
Urmson, C.; Simmons, R. Approaches for heuristically biasing RRT growth. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA, 27–31 October 2003; pp. 1178–1183.