2509001233
  • Open Access
  • Article
Fixed-Time Synchronization of Spatiotemporal Networks via Quantized Boundary Control
  • Tingting Shi 1,   
  • Cheng Hu 1, 2, *,   
  • Juan Yu 1, 2

Received: 20 May 2025 | Revised: 24 Jul 2025 | Accepted: 15 Aug 2025 | Published: 03 Sep 2025

Abstract

In this paper, the fixed-time synchronization of spatiotemporal networks under quantized boundary control is investigated, where the network coupling encompasses both state coupling and spatial diffusion coupling. First, under the mixed boundary condition, two innovative power-law controllers embedded with a quantization mechanism are designed, and the controllers operate at the boundary of the spatial domain. Subsequently, by employing inequality techniques and fixed-time stability theory, several verifiable criteria are derived to ensure the fixed-time synchronization of the addressed spatiotemporal networks. Lastly, the theoretical results are validated through by numerical simulations of two illustrative examples.

References 

  • 1.
    Dubey, B.; Das, B.; Hussain, J. A predator-prey interaction model with self and cross-diffusion. Ecol. Model 2001, 141, 67–76.
  • 2.
    Roussel, C.; Roussel, M. Reaction-diffusion models of development with state-dependent chemical diffusion coefficients. Prog. Biophys. Mol. Biol. 2004, 86, 113–160.
  • 3.
    Chua, L.; Roska, T. The CNN paradigm. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 1993, 40, 147–156.
  • 4.
    Wang, L.; Zhang, C. Exponential synchronization of memristor-based competitive neural networks with reaction-diffusions and infinite distributed delays. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 745–758.
  • 5.
    Baccoli, A.; Pisano, A.; Orlov, Y. Boundary control of coupled reaction-diffusion processes with constant parameters. Automatica 2015, 54, 80–90.
  • 6.
    Liu, X.; Wu, K.; Zhang, W. Intermittent boundary stabilization of stochastic reaction-diffusion Cohen-Grossberg neural networks. Neural Netw. 2020, 131, 1–13.
  • 7.
    Lin, J.; Xu, R.; Li, L. Spatio-temporal synchronization of reaction-diffusion BAM neural networks via impulsive pinning control. Neurocomputing 2020, 418, 300–313.
  • 8.
    Wu, T.; Cao, J.; Xiong, L.; et al. Adaptive event-triggered mechanism to synchronization of reaction-diffusion CVNNs and its application in image secure communication. IEEE Trans. Syst. Man, Cybern. Syst. 2023, 53, 5307–5320.
  • 9.
    Khan, A.; Javeed, M.; Hassan, W.; et al. Event-triggered consensus control with dynamic agents and communication delays in heterogeneous multi-agent systems. Alex. Eng. J. 2025, 128, 1–11.
  • 10.
    Song, X.; Wang, M.; Song, S.; et al. Intermittent pinning synchronization of reaction-diffusion neural networks with multiple spatial diffusion couplings. Neural Comput. Appl. 2019, 31, 9279–9294.
  • 11.
    An, X.; Zhang, L.; Li, Y.; et al. Synchronization analysis of complex networks with multi-weights and its application in public traffic network. Phys. A Stat. Mech. Appl. 2014, 412, 149–156.
  • 12.
    Halleux, J.; Prieur, C.; Coron, J.; et al. Boundary feedback control in networks of open channels. Automatica 2003, 39, 1365–1376.
  • 13.
    Tang, L.; Zhang, X.; Liu, Y. Boundary controller design for flexible riser systems with input quantization and position constraint. Automatica 2024, 168, 111815.
  • 14.
    Wu, K.; Tian, T.; Wang, L. Synchronization for a class of coupled linear partial differential systems via boundary control. J. Frankl. Inst. 2016, 353, 4026–4073.
  • 15.
    Liu, X.; Wu, K.; Li, Z. Exponential stabilization of reaction-diffusion systems via intermittent boundary control. IEEE Trans. Autom. Control 2022, 67, 3036–3042.
  • 16.
    Wu, K.; Tian, T.; Wang, L.; et al. Asymptotical synchronization for a class of coupled time-delay partial differential systems via boundary control. Neurocomputing 2016, 197, 113–118.
  • 17.
    Yang, C.; Cao, J.; Huang, T.; et al. Guaranteed cost boundary control for cluster synchronization of complex spatio-temporal dynamical networks with community structure. Sci. China Inf. Sci. 2018, 61, 052203.
  • 18.
    Yang, C.; Huang, T.; Li, Z.; et al. Synchronization of nonlinear complex spatio-temporal networks using adaptive boundary control and pinning adaptive boundary control. IEEE Access 2018, 6, 38216–38224.
  • 19.
    He, H. Asymptotical synchronization of coupled time-delay partial differential systems via pinning control and boundary control. Int. J. Adv. Netw. Appl. 2020, 11, 4443–4450.
  • 20.
    Liu, F.; Yang, Y.; Wang, F.; et al. Synchronization of fractional-order reaction-diffusion neural networks with Markov parameter jumping: Asynchronous boundary quantization control. Chaos, Solitons Fractals 2023, 173, 113622.
  • 21.
    Yang, X.S.; Cheng, Z.H.; Li, X.; et al. Exponential synchronization of coupled neutral-type neural networks with mixed delays via quantized output control. J. Frankl. Inst. 2019, 356, 8138–8153.
  • 22.
    Meng, P.; Kong, F.; Zhu, Q.; et al. Quantized control based on fixed-time and predefined-time stabilization of coupled Filippov systems on networks with mismatched parameters. Nonlinear Dyn. 2025, 113, 10043–10060.
  • 23.
    Xiong, X.; Yang, X.; Cao, J.; et al. Finite-time control for a class of hybrid systems via quantized intermittent control. Sci. China Inf. Sci. 2020, 63, 192201.
  • 24.
    Yang, X.; Cao, J.; Xu, C.; et al. Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller. Sci. China Technol. Sci. 2018, 61, 299–308.
  • 25.
    Wu, K.; Chen, B. Synchronization of partial differential systems via diffusion coupling. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2655–2668.
  • 26.
    Bhat, S.; Bernstein, D. Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 2000, 38, 751–766.
  • 27.
    Xu, Y.; Liu, W.; Wu, Y.; et al. Finite-time synchronization of fractional-order fuzzy time-varying coupled neural networks subject to reaction-diffusion. IEEE Trans. Fuzzy Syst. 2023, 31, 3423–3432.
  • 28.
    Franceschelli, M.; Pisano, A.; Giua, A.; et al. Finite-time consensus with disturbance rejection by discontinuous local interactions in directed graphs. IEEE Trans. Autom. Control 2015, 60, 1133–1138.
  • 29.
    Luo, Y.; Ling, Z.; Yao, Y. Finite time synchronization for reactive diffusion complex networks via boundary control. IEEE Access 2019, 7, 68628–68635.
  • 30.
    Wu, K.; Sun, H.; Shi, P.; et al. Finite-time boundary stabilization of reaction-diffusion systems. Int. J. Robust Nonlinear Control 2018, 28, 1641–1652.
  • 31.
    Wu, K.; Sun, H.; Shi, P.; et al. Finite-time boundary control for delay reaction-diffusion systems. Appl. Math. Comput. 2018, 329, 52–63.
  • 32.
    Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 2012, 57, 2106–2110.
  • 33.
    Hu, C.; Jiang, H. Special functions-based fixed-time estimation and stabilization for dynamic systems. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 3251–3262.
  • 34.
    Hu, C.; He, H.; Jiang, H. Fixed/Preassigned-time synchronization of complex networks via improving fixed-time stability. IEEE Trans. Cybern. 2020, 51, 2882–2892.
  • 35.
    Gao, Y.; Yu, J.; Hu, C.; et al. Fixed/preassigned-time output synchronization for T-S fuzzy complex networks via quantized control. Nonlinear Anal. Hybrid Syst. 2024, 51, 101434.
  • 36.
    Wang, Z.; Cao, J.; Cai, Z.; et al. Anti-Synchronization in Fixed time for discontinuous reaction-diffusion neural networks with time-varying coefficients and time delay. IEEE Trans. Cybern. 2019, 50, 2758–2769.
  • 37.
    Lian, D.; Min, S. Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinu- ous activations. Chaos Solitons Fractals 2021, 142, 110386.
  • 38.
    Duan, L.; Shi, M.; Huang, L. New results on finite-/fixed-time synchronization of delayed diffusive fuzzy HNNs with discontinuous activations. Fuzzy Sets Syst. 2021, 416, 141–151.
  • 39.
    Song, X.; Man, J.; Song, S.; et al. Finite/fixed-time synchronization for Markovian complex-valued memristive neural networks with reaction-diffusion terms and its application. Neurocomputing 2020, 414, 131–142.
  • 40.
    Espitia, N.; Polyakov, A.; Efimov, D.; et al. Boundary time-varying feedbacks for fixed-time stabilization of constant- parameter reaction-diffusion systems. Automatica 2019, 103, 398–407.
  • 41.
    Li, Z.; Liu, X.; Wu, K.; et al. Fixed-time boundary stabilisation for delay reaction-diffusion systems. Int. J. Control 2024, 97, 272–283.
  • 42.
    Shi, T.; Hu, C.; Yu, J.; et al. Fixed-time quantized synchronization of spatiotemporal networks with output-based quantization communication via boundary control. J. Frankl. Inst. 2025, 362, 107460.
  • 43.
    Peng, Z.; Song, X.; Song, S.; et al. Hysteresis quantified control for switched reaction-diffusion systems and its application. Complex Intell. Syst. 2023, 9, 7451–7460.
  • 44.
    Zekraoui, S.; Espitia, N.; Perruquetti, W. Output-feedback stabilization in prescribed-time of a class of reaction-diffusion PDEs with boundary input delay. IEEE Trans. Autom. Control 2025, 70, 5066–5081. https://doi.org/10.1109/TAC.2025.3535189.
Share this article:
How to Cite
Shi, T.; Hu, C.; Yu, J. Fixed-Time Synchronization of Spatiotemporal Networks via Quantized Boundary Control . Intelligence & Control 2025, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.