- 1.
Dubey, B.; Das, B.; Hussain, J. A predator-prey interaction model with self and cross-diffusion. Ecol. Model 2001, 141, 67–76.
- 2.
Roussel, C.; Roussel, M. Reaction-diffusion models of development with state-dependent chemical diffusion coefficients. Prog. Biophys. Mol. Biol. 2004, 86, 113–160.
- 3.
Chua, L.; Roska, T. The CNN paradigm. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 1993, 40, 147–156.
- 4.
Wang, L.; Zhang, C. Exponential synchronization of memristor-based competitive neural networks with reaction-diffusions and infinite distributed delays. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 745–758.
- 5.
Baccoli, A.; Pisano, A.; Orlov, Y. Boundary control of coupled reaction-diffusion processes with constant parameters. Automatica 2015, 54, 80–90.
- 6.
Liu, X.; Wu, K.; Zhang, W. Intermittent boundary stabilization of stochastic reaction-diffusion Cohen-Grossberg neural networks. Neural Netw. 2020, 131, 1–13.
- 7.
Lin, J.; Xu, R.; Li, L. Spatio-temporal synchronization of reaction-diffusion BAM neural networks via impulsive pinning control. Neurocomputing 2020, 418, 300–313.
- 8.
Wu, T.; Cao, J.; Xiong, L.; et al. Adaptive event-triggered mechanism to synchronization of reaction-diffusion CVNNs and its application in image secure communication. IEEE Trans. Syst. Man, Cybern. Syst. 2023, 53, 5307–5320.
- 9.
Khan, A.; Javeed, M.; Hassan, W.; et al. Event-triggered consensus control with dynamic agents and communication delays in heterogeneous multi-agent systems. Alex. Eng. J. 2025, 128, 1–11.
- 10.
Song, X.; Wang, M.; Song, S.; et al. Intermittent pinning synchronization of reaction-diffusion neural networks with multiple spatial diffusion couplings. Neural Comput. Appl. 2019, 31, 9279–9294.
- 11.
An, X.; Zhang, L.; Li, Y.; et al. Synchronization analysis of complex networks with multi-weights and its application in public traffic network. Phys. A Stat. Mech. Appl. 2014, 412, 149–156.
- 12.
Halleux, J.; Prieur, C.; Coron, J.; et al. Boundary feedback control in networks of open channels. Automatica 2003, 39, 1365–1376.
- 13.
Tang, L.; Zhang, X.; Liu, Y. Boundary controller design for flexible riser systems with input quantization and position constraint. Automatica 2024, 168, 111815.
- 14.
Wu, K.; Tian, T.; Wang, L. Synchronization for a class of coupled linear partial differential systems via boundary control. J. Frankl. Inst. 2016, 353, 4026–4073.
- 15.
Liu, X.; Wu, K.; Li, Z. Exponential stabilization of reaction-diffusion systems via intermittent boundary control. IEEE Trans. Autom. Control 2022, 67, 3036–3042.
- 16.
Wu, K.; Tian, T.; Wang, L.; et al. Asymptotical synchronization for a class of coupled time-delay partial differential systems via boundary control. Neurocomputing 2016, 197, 113–118.
- 17.
Yang, C.; Cao, J.; Huang, T.; et al. Guaranteed cost boundary control for cluster synchronization of complex spatio-temporal dynamical networks with community structure. Sci. China Inf. Sci. 2018, 61, 052203.
- 18.
Yang, C.; Huang, T.; Li, Z.; et al. Synchronization of nonlinear complex spatio-temporal networks using adaptive boundary control and pinning adaptive boundary control. IEEE Access 2018, 6, 38216–38224.
- 19.
He, H. Asymptotical synchronization of coupled time-delay partial differential systems via pinning control and boundary control. Int. J. Adv. Netw. Appl. 2020, 11, 4443–4450.
- 20.
Liu, F.; Yang, Y.; Wang, F.; et al. Synchronization of fractional-order reaction-diffusion neural networks with Markov parameter jumping: Asynchronous boundary quantization control. Chaos, Solitons Fractals 2023, 173, 113622.
- 21.
Yang, X.S.; Cheng, Z.H.; Li, X.; et al. Exponential synchronization of coupled neutral-type neural networks with mixed delays via quantized output control. J. Frankl. Inst. 2019, 356, 8138–8153.
- 22.
Meng, P.; Kong, F.; Zhu, Q.; et al. Quantized control based on fixed-time and predefined-time stabilization of coupled Filippov systems on networks with mismatched parameters. Nonlinear Dyn. 2025, 113, 10043–10060.
- 23.
Xiong, X.; Yang, X.; Cao, J.; et al. Finite-time control for a class of hybrid systems via quantized intermittent control. Sci. China Inf. Sci. 2020, 63, 192201.
- 24.
Yang, X.; Cao, J.; Xu, C.; et al. Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller. Sci. China Technol. Sci. 2018, 61, 299–308.
- 25.
Wu, K.; Chen, B. Synchronization of partial differential systems via diffusion coupling. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2655–2668.
- 26.
Bhat, S.; Bernstein, D. Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 2000, 38, 751–766.
- 27.
Xu, Y.; Liu, W.; Wu, Y.; et al. Finite-time synchronization of fractional-order fuzzy time-varying coupled neural networks subject to reaction-diffusion. IEEE Trans. Fuzzy Syst. 2023, 31, 3423–3432.
- 28.
Franceschelli, M.; Pisano, A.; Giua, A.; et al. Finite-time consensus with disturbance rejection by discontinuous local interactions in directed graphs. IEEE Trans. Autom. Control 2015, 60, 1133–1138.
- 29.
Luo, Y.; Ling, Z.; Yao, Y. Finite time synchronization for reactive diffusion complex networks via boundary control. IEEE Access 2019, 7, 68628–68635.
- 30.
Wu, K.; Sun, H.; Shi, P.; et al. Finite-time boundary stabilization of reaction-diffusion systems. Int. J. Robust Nonlinear Control 2018, 28, 1641–1652.
- 31.
Wu, K.; Sun, H.; Shi, P.; et al. Finite-time boundary control for delay reaction-diffusion systems. Appl. Math. Comput. 2018, 329, 52–63.
- 32.
Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 2012, 57, 2106–2110.
- 33.
Hu, C.; Jiang, H. Special functions-based fixed-time estimation and stabilization for dynamic systems. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 3251–3262.
- 34.
Hu, C.; He, H.; Jiang, H. Fixed/Preassigned-time synchronization of complex networks via improving fixed-time stability. IEEE Trans. Cybern. 2020, 51, 2882–2892.
- 35.
Gao, Y.; Yu, J.; Hu, C.; et al. Fixed/preassigned-time output synchronization for T-S fuzzy complex networks via quantized control. Nonlinear Anal. Hybrid Syst. 2024, 51, 101434.
- 36.
Wang, Z.; Cao, J.; Cai, Z.; et al. Anti-Synchronization in Fixed time for discontinuous reaction-diffusion neural networks with time-varying coefficients and time delay. IEEE Trans. Cybern. 2019, 50, 2758–2769.
- 37.
Lian, D.; Min, S. Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinu- ous activations. Chaos Solitons Fractals 2021, 142, 110386.
- 38.
Duan, L.; Shi, M.; Huang, L. New results on finite-/fixed-time synchronization of delayed diffusive fuzzy HNNs with discontinuous activations. Fuzzy Sets Syst. 2021, 416, 141–151.
- 39.
Song, X.; Man, J.; Song, S.; et al. Finite/fixed-time synchronization for Markovian complex-valued memristive neural networks with reaction-diffusion terms and its application. Neurocomputing 2020, 414, 131–142.
- 40.
Espitia, N.; Polyakov, A.; Efimov, D.; et al. Boundary time-varying feedbacks for fixed-time stabilization of constant- parameter reaction-diffusion systems. Automatica 2019, 103, 398–407.
- 41.
Li, Z.; Liu, X.; Wu, K.; et al. Fixed-time boundary stabilisation for delay reaction-diffusion systems. Int. J. Control 2024, 97, 272–283.
- 42.
Shi, T.; Hu, C.; Yu, J.; et al. Fixed-time quantized synchronization of spatiotemporal networks with output-based quantization communication via boundary control. J. Frankl. Inst. 2025, 362, 107460.
- 43.
Peng, Z.; Song, X.; Song, S.; et al. Hysteresis quantified control for switched reaction-diffusion systems and its application. Complex Intell. Syst. 2023, 9, 7451–7460.
- 44.
Zekraoui, S.; Espitia, N.; Perruquetti, W. Output-feedback stabilization in prescribed-time of a class of reaction-diffusion PDEs with boundary input delay. IEEE Trans. Autom. Control 2025, 70, 5066–5081. https://doi.org/10.1109/TAC.2025.3535189.