2512002555
  • Open Access
  • Article

Filter-Based Adaptive Fuzzy Control for an Uncertain Robotic Manipulator with Intermittent Input and Output Triggering

  • Jihang Sui 1,   
  • Alain Martinez 2,   
  • Ben Niu 3,*,   
  • Yunfei Mu 4,5,   
  • Deepak Kumar Jain 3,   
  • Dmytro Zubov 6

Received: 12 Nov 2025 | Revised: 03 Dec 2025 | Accepted: 17 Dec 2025 | Published: 24 Dec 2025

Abstract

This paper investigates the adaptive output feedback control issue for an uncertain robotic manipulator (RM) under input and output triggering. Due to the influence of the output-triggering mechanism, the output state becomes discrete, thereby leading to the non-differentiability problem of the virtual controller. Therefore, a first-order low-pass filter is constructed to generate a filtered version of the sampled output with continuous differentiability for controller design. By utilizing the fuzzy logic systems (FLSs), the unknown robotic dynamics are effectively approximated without requiring the global Lipschitz condition. Subsequently, an adaptive fuzzy state observer is developed based on the filtered output signal to estimate the joint velocity of the RM. Based on the Lyapunov stability analysis method of the hybrid system, it is rigorously proved that all signals of the RM are bounded, and Zeno behavior is precluded. Furthermore, the designed event-triggered control protocol can ensure the desirable system performance and reduce communication resources even under output discretization. Finally, a two-link RM is employed to verify the effectiveness of the control protocol.

References 

  • 1.

    Huang, H.; Chen, Y. Evolutionary optimization of fuzzy reinforcement learning and its application to time-varying tracking control of industrial parallel robotic manipulators. IEEE Trans. Ind. Inform. 2023, 19, 11712–11720.

  • 2.

    Steinhauser, A.; Swevers, J. An efficient iterative learning approach to time-optimal path tracking for industrial robots. IEEE Trans. Ind. Inform. 2018, 14, 5200–5207.

  • 3.

    Nie, S.; Qian, L.; Chen, L.; et al. Barrier lyapunov functions-based dynamic surface control with tracking error constraints for ammunition manipulator electro-hydraulic system. Def. Technol. 2021, 17, 836–845.

  • 4.

    Choi, B.; Lee, W.; Park, G.; et al. Development and control of a military rescue robot for casualty extraction task. J. Field Robot. 2019, 36, 656–676.

  • 5.

    Cheah, C.C.; Li, X.; Yan, X.; et al. Simple pd control scheme for robotic manipulation of biological cell. IEEE Trans. Autom. Control. 2014, 60, 1427–1432.

  • 6.

    Fu, J.; Burzo, I.; Iovene, E.; et al. Optimization-based variable impedance control of robotic manipulator for medical contact tasks. IEEE Trans. Instrum. Meas. 2024, 73, 1–8.

  • 7.

    Wang, H.; Li, Y. Adaptive control of robot manipulators with closed architecture. Automatica 2024, 162, 111040.

  • 8.

    Zhao, X.; Liu, Z.; Jiang, B.; et al. Switched controller design for robotic manipulator via neural network-based sliding mode approach. IEEE Trans. Circuits Syst. II Express Briefs 2022, 70, 561–565.

  • 9.

    Harandi, M.R.J.; Hassani, A.; Hosseini, M.I.; et al. Adaptive position feedback control of parallel robots in the presence of kinematics and dynamics uncertainties. IEEE Trans. Autom. Sci. Eng. 2023, 21, 989–999.

  • 10.

    Ma, H.; Ren, H.; Zhou, Q.; et al. Observer-based neural control of n-link flexible-joint robots. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 5295–5305.

  • 11.

    Qin, Q.; Gao, G.; Zhong, J. Finite-time adaptive extended state observer-based dynamic sliding mode control for hybrid robots. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3784–3788.

  • 12.

    Rayguru, M.M.; Mohan, R.E.; Parween, R.; et al. An output feedback based robust saturated controller design for pavement sweeping self-reconfigurable robot. IEEE/ASME Trans. Mechatron. 2021, 26, 1236–1247.

  • 13.

    Zhai, J.; Li, Z. Fast-exponential sliding mode control of robotic manipulator with super-twisting method. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 489–493.

  • 14.

    Sui, J.; Niu, B.; Ou, Y.; et al. Event-triggered adaptive finite-time control for a robotic manipulator system with global prescribed performance and asymptotic tracking. IEEE Trans. Cybern. 2025, 55, 1045–1055.

  • 15.

    Xu, H.; Yu, D.; Sui, S.; et al. An event-triggered predefined time decentralized output feedback fuzzy adaptive control method for interconnected systems. IEEE Trans. Fuzzy Syst. 2022, 31, 631–644.

  • 16.

    Xie, Y.; Ma, Q.; Wang, Z. Adaptive fuzzy event-triggered tracking control for nonstrict nonlinear systems. IEEE Trans. Fuzzy Syst. 2021, 30, 3527–3536.

  • 17.

    Li, Y.; Wei, M.; Tong, S. Event-triggered adaptive neural control for fractional-order nonlinear systems based on finite-time scheme. IEEE Trans. Cybern. 2022, 52, 9481–948.

  • 18.

    Cao, L.; Pan, Y.; Liang, H.; et al. Observer-based dynamic event-triggered control for multiagent systems with time-varying delay. IEEE Trans. Cybern. 2022, 53, 3376–3387.

  • 19.

    Wang, X.; Zhou, Y.; Luo, B.; et al. Event-triggered neuro-adaptive fixed-time control for nonlinear switched and constrained systems: An initial condition-independent method. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 71, 2229–2239.

  • 20.

    Yuan, W.; Liu, Y.-H.; Su, C.-Y.; et al. Whole-body control of an autonomous mobile manipulator using model predictive control and adaptive fuzzy technique. IEEE Trans. Fuzzy Syst. 2022, 31, 799–809.

  • 21.

    Alonso, R.; Bonini, A.; Recupero, D.R.; et al. Exploiting virtual reality and the robot operating system to remote-control a humanoid robot. Multimed. Tools Appl. 2022, 81, 15565–15592.

  • 22.

    Deng, Y.; Zhang, X.; Im, N.; et al. Model-based event-triggered tracking control of underactuated surface vessels with minimum learning parameters. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 4001–4014.

  • 23.

    Li, Y.; Yang, G.; Tong, S. Fuzzy adaptive distributed event-triggered consensus control of uncertain nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 2018 49, 1777–1786.

  • 24.

    Zhang, Z.; Wen, C.; Xing, L.; et al. Adaptive event-triggered control of uncertain nonlinear systems using intermittent output only. IEEE Trans. Autom. Control. 2021, 67, 4218–4225.

  • 25.

    Zhang, Z.; Wen, C.; Xing, L.; et al. Event-triggered adaptive control for a class of nonlinear systems with mismatched uncertainties via intermittent and faulty output feedback. IEEE Trans. Autom. Control. 2023, 68, 8142–8149.

  • 26.

    Zhang, Z.; Wen, C.; Xing, L.; et al. Adaptive output feedback control of nonlinear systems with mismatched uncertainties under input/output quantization. IEEE Trans. Autom. Control. 2022, 67, 4801–4808.

  • 27.

    Zhang, Z.; Wen, C.; Zhao, K.; et al. Decentralized adaptive control of uncertain interconnected systems with triggering state signals. Automatica 2022, 141, 110283.

  • 28.

    Hu, Y.; Yan, H.; Wang, M.; et al. Fuzzy observer-based input/output event-triggered control for euler–lagrange systems with guaranteed performance and input saturation. IEEE Trans. Fuzzy Syst. 2023, 32, 2077–2088.

  • 29.

    Xu, S.; He, B. Robust adaptive fuzzy fault tolerant control of robot manipulators with unknown parameters. IEEE Trans. Fuzzy Syst. 2023, 31, 3081–3092.

  • 30.

    Niu, B.; Sui, J.; Zhao, X.; et al. Adaptive fuzzy practical predefined-time bipartite consensus tracking control for heterogeneous nonlinear mass with actuator faults. IEEE Trans. Fuzzy Syst. 2024, 32, 3071–3083.

  • 31.

    Haddad, W.M.; Chellaboina, V.; Nersesov, S.G. Impulsive and hybrid dynamical systems: stability, dissipativity, and control. In Impulsive and Hybrid Dynamical Systems; Princeton University Press: Princeton, NJ, USA, 2014.

  • 32.

    Sahoo, A.; Xu, H.; Jagannathan, S. Neural network-based event-triggered state feedback control of nonlinear continuoustime systems. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 497–509.

  • 33.

    Sui, J.; Liu, C.; Niu, B.; et al. Prescribed performance adaptive containment control for full-state constrained nonlinear multiagent systems: A disturbance observer-based design strategy. IEEE Trans. Autom. Sci. Eng. 2025, 22, 179–190.

Share this article:
How to Cite
Sui, J.; Martinez, A.; Niu, B.; Mu, Y.; Jain, D. K.; Zubov, D. Filter-Based Adaptive Fuzzy Control for an Uncertain Robotic Manipulator with Intermittent Input and Output Triggering. Intelligence & Control 2025, 1 (1), 5. https://doi.org/10.53941/ic.2025.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.