- 1.
Awasthi A. ; Saxena K.K. ; Arun V . Sustainable and smart metal forming manufacturing process. Materials Today. Proceedings, 2021, 44, Part 1: 2069-2079.
- 2.
Cao J. ; Banu M . Opportunities and challenges in metal forming for lightweighting: review and future work. Journal of Manufacturing Science and Engineering, 2020, 142(11): 110813.
- 3.
Cullen J.M. ; Allwood J.M. ; Bambach M .D. Mapping the global flow of steel: from steelmaking to end-use goods. Environmental Science & Technology, 2012, 46(24): 13048-13055.
- 4.
Cullen J.M. ; Allwood J .M. Mapping the global flow of aluminum: from liquid aluminum to end-use goods. Environmental Science & Technology, 2013, 47(7): 3057-3064.
- 5.
El Fakir O. ; Wang L.L. ; Balint D. ; et al . Numerical study of the solution heat treatment, forming, and in-die quenching (HFQ) process on AA5754. International Journal of Machine Tools and Manufacture, 2014, 87: 39-48.
- 6.
Zheng K.L. ; Dong Y.C. ; Zheng J.H. ; et al . The effect of hot form quench (HFQ®) conditions on precipitation and mechanical properties of aluminium alloys. Materials Science and Engineering: A, 2019, 761: 138017.
- 7.
Zhang Q.L. ; Luan X. ; Dhawan S. ; et al . Development of the post-form strength prediction model for a high-strength 6xxx aluminium alloy with pre-existing precipitates and residual dislocations. International Journal of Plasticity, 2019, 119: 230-248.
- 8.
Sun Y.H. ; Wang K.H. ; Politis D.J. ; et al . An experimental investigation on the ductility and post-form strength of a martensitic steel in a novel warm stamping process. Journal of Materials Processing Technology, 2020, 275: 116387.
- 9.
Liu X.C. ; Di B.Z. ; Yu X.N. ; et al . Development of a formability prediction model for aluminium sandwich panels with polymer core. Materials, 2022, 15(12): 4140.
- 10.
Ma G.J. ; Wang L.L. ; Gao H.X. ; et al . The friction coefficient evolution of a TiN coated contact during sliding wear. Applied Surface Science, 2015, 345: 109-115.
- 11.
Elmkhah H. ; Mahboubi F. ; Abdollah-zadeh A. ; et al . A new approach to improve the surface properties of H13 steel for metal forming applications by applying the TiAlN multi-layer coating. Journal of Manufacturing Processes, 2018, 32: 873-877.
- 12.
Lugscheider E. ; Bobzin K. ; Piñero C. ; et al . Development of a superlattice (Ti,Hf,Cr)N coating for cold metal forming applications. Surface and Coatings Technology, 2004, 177/178: 616-622.
- 13.
Wang L.L. ; Zhou J. ; Duszczyk J. ; et al . Friction in aluminium extrusion—part 1: a review of friction testing techniques for aluminium extrusion. Tribology International, 2012, 56: 89-98.
- 14.
Wang L.L. ; Yang H .L. Friction in aluminium extrusion—part 2: a review of friction models for aluminium extrusion. Tribology International, 2012, 56: 99-106.
- 15.
Yang X. ; Liu X.C. ; Liu H. ; et al . Experimental and modelling study of friction evolution and lubricant breakdown behaviour under varying contact conditions in warm aluminium forming processes. Tribology International, 2021, 158: 106934.
- 16.
Liu H.L. ; Yang X. ; Zheng Y. ; et al . Experimental study on galling behavior in aluminum stamping processes. Physical Sciences Forum, 2022, 4(1): 10.
- 17.
Hu Y. ; Wang L. ; Politis D.J. ; et al . Development of an interactive friction model for the prediction of lubricant breakdown behaviour during sliding wear. Tribology International, 2017, 110: 370-377.
- 18.
Hu Y.R. ; Yuan X. ; Ma G.J. ; et al . Tool-life prediction under multi-cycle loading during metal forming: a feasibility study. Manufacturing Review, 2015, 2: 28.
- 19.
Li Z.X. ; Rezaei S. ; Wang T. ; et al . Recent advances and trends in roll bonding process and bonding model: a review. Chinese Journal of Aeronautics, 2022, in press.
- 20.
Bai C.G. ; Dallasega P. ; Orzes G. ; et al . Industry 4.0 technologies assessment: a sustainability perspective. International Journal of Production Economics, 2020, 229: 107776.
- 21.
Ibarra D. ; Ganzarain J. ; Igartua J .I. Business model innovation through industry 4.0: a review. Procedia Manufacturing, 2018, 22: 4-10.
- 22.
Xu H.S. ; Yu W. ; Griffith D. ; et al . A survey on industrial internet of things: a cyber-physical systems perspective. IEEE Access, 2018, 6: 78238-78259.
- 23.
Majeed A. ; Zhang Y.F. ; Ren S. ; et al . A big data-driven framework for sustainable and smart additive manufacturing. Robotics and Computer-integrated Manufacturing, 2021, 67: 102026.
- 24.
- 25.
Leitão P. ; Colombo A.W. ; Karnouskos S . Industrial automation based on cyber-physical systems technologies: prototype implementations and challenges. Computers in Industry, 2016, 81: 11-25.
- 26.
Gupta N. ; Tiwari A. ; Bukkapatnam S .T.S.; et al. Additive manufacturing cyber-physical system: supply chain cybersecurity and risks. IEEE Access, 2020, 8: 47322-47333.
- 27.
Chen B. ; Chang J .Y.J. Dynamic analysis of intelligent coil leveling machine for cyber-physical systems implementation. Procedia CIRP, 2017, 63: 390-395.
- 28.
Sun J. ; Peng W. ; Ding J.G. ; et al . Key intelligent technology of steel strip production through process. Metals, 2018, 8(8): 597.
- 29.
Lee J. ; Noh S.D. ; Kim H.J. ; et al . Implementation of cyber-physical production systems for quality prediction and operation control in metal casting. Sensors, 2018, 18(5): 1428.
- 30.
Gan L. ; Huang H.H. ; Li L. ; et al . IoT-enabled energy efficiency monitoring and analysis method for energy saving in sheet metal forming workshop. Journal of Central South University, 2022, 29(1): 239-258.
- 31.
Witkowski K . Internet of things, big data, industry 4.0—innovative solutions in logistics and supply chains managemen. Procedia Engineering, 2017, 182: 763-769.
- 32.
Ralph B.J. ; Sorger M. ; Hartl K. ; et al . Transformation of a rolling mill aggregate to a cyber physical production system: from sensor retrofitting to machine learning. Journal of Intelligent Manufacturing, 2022, 33(2): 493-518.
- 33.
Wang L. ; Zhu B. ; Liu Y. ; et al . Design and application of CPS for hot stamping based on cloud computing. Advanced High Strength Steel and Press Hardening, Proceedings of the 5th International Conference (ICHSU2020), Shanghai, China: ICHUS, 2021: 423-429.
- 34.
Oruganti S.K. ; Khosla A. ; Thundat T .G. Wireless power-data transmission for industrial internet of things: simulations and experiments. IEEE Accesss, 2020, 8: 187965-187974.
- 35.
- 36.
Sisinni E. ; Saifullah A. ; Han S. ; et al . Industrial internet of things: challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics, 2018, 14(11): 4724-4734.
- 37.
Yang M . Sensing technologies for metal forming. Sensors and Materials, 2019, 31(10): 3121-3128.
- 38.
Suresh A. ; Udendhran R. ; Yamini G . Internet of things and additive manufacturing: toward intelligent production systems in industry 4.0. Kanagachidambaresan, G.; Anand, R.; Balasubramanian, E.; et al. Internet of things for industry 4.0: designchallenges and solutions. Cham: Springer, 2020: 73-89.
- 39.
Mahayotsanun N. ; Sah S. ; Cao J. ; et al . Tooling-integrated sensing systems for stamping process monitoring. International Journal of Machine Tools & Manufacture, 2009, 49(7/8): 634-644.
- 40.
Groche P. ; Brenneis M . Manufacturing and use of novel sensoric fasteners for monitoring forming processes. Measurement, 2014, 53: 136-144.
- 41.
Yang M . Smart metal forming with digital process and IoT. International Journal of Lightweight Materials and Manufacture, 2018, 1(4): 207-214.
- 42.
Tatipala S. ; Wall J. ; Johansson C. ; et al . A hybrid data-based and model-based approach to process monitoring and control in sheet metal forming. Processes, 2020, 8(1): 89.
- 43.
Dilberoglu U.M. ; Gharehpapagh B. ; Yaman U. ; et al . The role of additive manufacturing in the era of industry 4.0. Procedia Manufacturing, 2017, 11: 545-554.
- 44.
Ashima R. ; Haleem B. ; Bahl S. ; et al . Automation and manufacturing of smart materials in additive manufacturing technologies using Internet of Things towards the adoption of industry 4.0. Materials Today: Proceedings, 2021, 45(6): 5081-5088.
- 45.
Kawamoto K. ; Ando H. ; Yamamichi K . Application of servo presses to metal forming processes. Procedia Manufacturing, 2018, 15: 31-38.
- 46.
Chen E.H. ; Cao H.J. ; He Q.Y. ; et al . An IoT based framework for energy monitoring and analysis of die casting workshop. Procedia CIRP, 2019, 80: 693-698.
- 47.
Gan L. ; Li L. ; Huang H .H. Digital twin-driven sheet metal forming: modeling and application for stamping considering mold wear. Journal of Manufacturing Science and Engineering, 2022, 144(12): 121003.
- 48.
Tao F. ; Zhang H. ; Liu A. ; et al . Digital twin in industry: state-of-the-art. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405-2415.
- 49.
Uhlemann T .H.J.; Lehmann C.; Steinhilper R. The digital twin: realizing the cyber-physical production system for industry 4.0. Procedia CIRP, 2017, 61: 335-340.
- 50.
Tao F. ; Qi Q .L. Make more digital twins. Nature, 2019, 573(7775): 490-491.
- 51.
Söderberg R. ; Wärmefjord K. ; Carlson J.S. ; et al . Toward a Digital Twin for real-time geometry assurance in individualized production. CIRP Annals, 2017, 66(1): 137-140.
- 52.
Moreno A. ; Velez G. ; Ardanza A. ; et al . Virtualisation process of a sheet metal punching machine within the industry 4.0 vision. International Journal on Interactive Design and Manufacturing (IJIDeM), 2017, 11(2): 365-373.
- 53.
Ralph B.J. ; Schwarz A. ; Stockinger M . An implementation approach for an academic learning factory for the metal forming industry with special focus on digital twins and finite element analysis. Procedia Manufacturing, 2020, 45: 253-258.
- 54.
Gaikwad A. ; Yavari R. ; Montazeri M. ; et al . Toward the digital twin of additive manufacturing: integrating thermal simulations, sensing, and analytics to detect process faults. IISE Transactions, 2020, 52(11): 1204-1217.
- 55.
Gunasegaram D.R. ; Murphy A.B. ; Matthews M.J. ; et al . The case for digital twins in metal additive manufacturing. JPhys Materials, 2021, 4(4): 040401.
- 56.
Stavropoulos P. ; Papacharalampopoulos A. ; Michail C.K. ; et al . Robust additive manufacturing performance through a control oriented digital twin. Metals, 2021, 11(5): 708.
- 57.
Phua A. ; Davies C .H.J.; Delaney G.W. A digital twin hierarchy for metal additive manufacturing. Computers in Industry, 2022, 140: 103667.
- 58.
Liu C. ; Roux L.L. ; Körner C. ; et al . Digital twin-enabled collaborative data management for metal additive manufacturing systems. Journal of Manufacturing Systems, 2022, 62: 857-874.
- 59.
Mandolla C. ; Petruzzelli A.M. ; Percoco G. ; et al . Building a digital twin for additive manufacturing through the exploitation of blockchain: a case analysis of the aircraft industry. Computers in Industry, 2019, 109: 134-152.
- 60.
Everton S.K. ; Hirsch M. ; Stravroulakis P. ; et al . Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials & Design, 2016, 95: 431-445.
- 61.
Mukherjee T. ; DebRoy T . A digital twin for rapid qualification of 3D printed metallic components. Applied Materials Today, 2019, 14: 59-65.
- 62.
Yao B. ; Imani F. ; Yang H . Markov decision process for image-guided additive manufacturing. IEEE Robotics and Automation Letters, 2018, 3(4): 2792-2798.
- 63.
Son Y.H. ; Park K.T. ; Lee D. ; et al . Digital twin–based cyber-physical system for automotive body production lines. The International Journal of Advanced Manufacturing Technology, 2021, 115(1): 291-310.
- 64.
Zhong R.Y. ; Newman S.T. ; Huang G.Q. ; et al . Big data for supply chain management in the service and manufacturing sectors: challenges, opportunities, and future perspectives. Computers & Industrial Engineering, 2016, 101: 572-591.
- 65.
Wilkinson M.D. ; Dumontier M. ; Aalbersberg I .J.J.; et al. The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 2016, 3: 160018.
- 66.
Fortune Business Insights. Big data in manufacturing industry size, share & industry analysis, by offering (solution and services), by development (on premise, cloud-based and hybrid), by application (customer analytics, quality assessment, supply chain management, production management, and others) and regional forecast . Available Online:
https://www.fortunebusinessinsights.com/big-data-in-manufacturing-industry-102366 (Accessed on 23 September 2022).
- 67.
Cao J. ; Brinksmeier E. ; Fu M.W. ; et al . Manufacturing of advanced smart tooling for metal forming. CIRP Annals, 2019, 68(2): 605-628.
- 68.
Bonatti C. ; Mohr D . One for all: universal material model based on minimal state-space neural networks. Science Advances, 2021, 7(26): eabf3658.
- 69.
Feng S. ; Zhou H.Y. ; Dong H .B. Using deep neural network with small dataset to predict material defects. Materials & Design, 2019, 162: 300-310.
- 70.
Bustillo A. ; Pimenov D.Y. ; Mia M. ; et al . Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth. Journal of Intelligent Manufacturing, 2021, 32(3): 895-912.
- 71.
Li X. ; Jia X.D. ; Yang Q.B. ; et al . Quality analysis in metal additive manufacturing with deep learning. Journal of Intelligent Manufacturing, 2020, 31(8): 2003-2017.
- 72.
Kusiak A . Smart manufacturing must embrace big data. Nature, 2017, 544(7648): 23-25.
- 73.
Kang H.S. ; Lee J.Y. ; Choi S.S. ; et al . Smart manufacturing: past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(1): 111-128.
- 74.
Wang A.L. ; Liu J. ; Gao H.X. ; et al . Hot stamping of AA6082 tailor welded blanks: experiments and knowledge-based cloud–finite element (KBC-FE) simulation. Journal of Materials Processing Technology, 2017, 250: 228-238.
- 75.
Zhu M.Q. ; Lim Y.C. ; Cai Z.J. ; et al . Cloud FEA of hot stamping processes using a software agnostic platform. The International Journal of Advanced Manufacturing Technology, 2021, 112(11): 3445-3458.
- 76.
Wang K.H. ; Kopec M. ; Chang S.P. ; et al . Enhanced formability and forming efficiency for two-phase Titanium alloys by Fast light Alloys Stamping Technology (FAST) Materials & Design, 2020, 194: 108948.
- 77.
Alsamhan A. ; Ragab A.E. ; Dabwan A. ; et al . Prediction of formation force during single-point incremental sheet metal forming using artificial intelligence techniques. PLoS One, 2019, 14(8): e0221341.
- 78.
Kubik C. ; Knauer S.M. ; Groche P . Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking. Journal of Intelligent Manufacturing, 2022, 33(1): 259-282.
- 79.
Merayo D. ; Rodríguez-Prieto A. ; Camacho A . M. Topological optimization of artificial neural networks to estimate mechanical properties in metal forming using machine learning. Metals, 2021, 11(8): 1289.
- 80.
Li W. ; Zhang L.C. ; Chen X.P. ; et al . Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence. The International Journal of Advanced Manufacturing Technology, 2021, 112(3): 853-865.
- 81.
Taherkhani A. ; Basti A. ; Nariman-Zadeh N. ; et al . Achieving maximum dimensional accuracy and surface quality at the shortest possible time in single-point incremental forming via multi-objective optimization. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(3): 900-913.
- 82.
Ambrogio G. ; Filice L. ; Guerriero F. ; et al . Prediction of incremental sheet forming process performance by using a neural network approach. The International Journal of Advanced Manufacturing Technology, 2011, 54(9): 921-930.
- 83.
Liu S.M. ; Xia Y.F. ; Liu Y.H. ; et al . Tool path planning of consecutive free-form sheet metal stamping with deep learning. Journal of Materials Processing Technology, 2022, 303: 117530.
- 84.
Opritescu D. ; Volk W . Automated driving for individualized sheet metal part production—A neural network approach. Robotics and Computer-Integrated Manufacturing, 2015, 35: 144-150.
- 85.
Chan W.L. ; Fu M.W. ; Lu J . An integrated FEM and ANN methodology for metal-formed product design. Engineering Applications of Artificial Intelligence, 2008, 21(8): 1170-1181.
- 86.
Pilani R. ; Narasimhan K. ; Maiti S.K. ; et al . A hybrid intelligent systems approach for die design in sheet metal forming. The International Journal of Advanced Manufacturing Technology, 2000, 16(5): 370-375.
- 87.
Zhang M. ; Sun C.N. ; Zhang X. ; et al . High cycle fatigue life prediction of laser additive manufactured stainless steel: a machine learning approach. International Journal of Fatigue, 2019, 128: 105194.
- 88.
Zhou H.S. ; Xu Q.F. ; Nie Z.G. ; et al . A study on using image-based machine learning methods to develop surrogate models of stamp forming simulations. Journal of Manufacturing Science and Engineering, 2022, 144(2): 021012.
- 89.
Yang X. ; Liu H.L. ; Dhawan S. ; et al . Digitally-enhanced lubricant evaluation scheme for hot stamping applications. Nature Communications, 2022, 13(1): 5748.
- 90.
Dillon T. ; Wu C. ; Chang E . Cloud computing: issues and challenges. 2010 24th IEEE International Conference on Advanced Information Networking and Applications, Perth, WA, Australia: IEEE, 2010: 27-33.
- 91.
Helo P. ; Phuong D. ; Hao Y . Cloud manufacturing – scheduling as a service for sheet metal manufacturing. Computers & Operations Research, 2019, 110: 208-219.
- 92.
Paniti I . Adaptation of incremental sheet forming into cloud manufacturing. CIRP Journal of Manufacturing Science and Technology, 2014, 7(3): 185-190.
- 93.
Kao Y.C. ; Liu Y.P. ; Wei C.L. ; et al . Application of a cyber-physical system and machine-to-machine communication for metal processes. 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA: IEEE, 2018: 1-6.
- 94.
Dhawan S . Development of a cloud FEA platform for advanced FE simulations of metal forming processes. (Imperial College London, 2022).
- 95.
Wang A.L. ; El Fakir O. ; Liu J. ; et al . Multi-objective finite element simulations of a sheet metal-forming process via a cloud-based platform. The International Journal of Advanced Manufacturing Technology, 2019, 100(9): 2753-2765.
- 96.
Wang A.L. ; Zheng Y. ; Liu J. ; et al . Knowledge based cloud FE simulation–data-driven material characterization guidelines for the hot stamping of aluminium alloys. Journal of Physics: Conference Series, 2016, 734: 032042.
- 97.
Yang, Lubricant X. 4.0: Digitally enhanced lubricant development for metal forming applications. (Imperial College London, 2021.
- 98.
Luan X. ; Zhang Q.L. ; Fakir O.E. ; et al . Uni-Form: a pilot production line for hot/warm sheet metal forming integrated in a cloud based SMARTFORMING platform. Zhang, Y.S.; Ma, M.T. Advanced high strength steel and press hardening. Singapore: World Scientific, 2016: 492-497.
- 99.
Fakir O. ; Wang A. ; Zhang Q. ; et al . Multi-objective sheet metal forming simulations using a software agnostic platform. IOP Conference Series: Materials Science and Engineering, 2018, 418: 012122.
- 100.
Jain N. ; Choudhary S . Overview of virtualization in cloud computing. 2016 Symposium on Colossal Data Analysis and Networking (CDAN), Indore, India: IEEE, 2016: 1-4.
- 101.
Fuller A. ; Fan Z. ; Day C. ; et al . Digital twin: enabling technologies, challenges and open research. IEEE Access, 2020, 8: 108952-108971.
- 102.
Hagenah H. ; Schulte R. ; Vogel M. ; et al . 4.0 in metal forming–questions and challenges. Procedia CIRP, 2019, 79: 649-654.