2504000480
  • Open Access
  • Article
Recycled Carbon Fibre Composites in Automotive Manufacturing
  • Jean-Baptiste R. G. Souppez 1, *,   
  • Geethanjali S. Pavar 2

Received: 02 Feb 2023 | Accepted: 22 Feb 2023 | Published: 06 Mar 2023

Abstract

The contemporary need for lightweight and sustainable materials in automotive manufacturing has made recycled carbon fibre an attractive option. Yet, aspects such as the mechanical properties of short fibre composites need to be characterised to fully identify the capabilities and opportunities for recycled carbon fibre in the automotive industry. Consequently, this paper aims to ascertain the potential of recycled carbon fibre materials for automotive manufacturing by considering mechanical properties, design implications, and resulting costs and sustainability. Destructive testing is employed to characterise the mechanical properties of virgin carbon fibre (VCF), recycled carbon fibre (RCF) using pyrolysis, and blended recycled carbon fibre (BRCF) comprising 50% polypropylene fibre. Here we quantify (i) the reduction in mechanical properties, namely the tensile modulus and breaking strength, (ii) the resulting increase in required thickness and therefore mass for manufactured parts and (iii) the reduction in cost and embodied energy achieved for RCF and BRCF compared to VCF, based on both a stiffness- and a strength-driven design criterion. Furthermore, we present a decision-making methodology revealing BRCF as the most cost-effective solution, while RCF proves to be the most sustainable alternative. These results provide a novel quantitative assessment of recycled carbon fibre for automotive manufacturing and may contribute to future developments in sustainable composite manufacturing in the automotive industry.

References 

  • 1.
    Zhou X.Y. ; Jiang J. ; Hu Z.L. ; et al . Lightweight Materials in Electric Vehicles. International Journal of Automotive Manufacturing and Materials 2022, 1(1) 4. https://www.sciltp.com/journals/ijamm/article/view/122
  • 2.
    Taub A.I. ; Luo A.A. Advanced lightweight materials and manufacturing processes for automotive applications. Mrs Bulletin 2015, 40(12), 1045–1054. https://doi.org/10.1557/mrs.2015.268
  • 3.
    Yancey, R.N. Challenges, opportunities, and perspectives on lightweight composite structures: aerospace versus automotive. In Lightweight Composite Structures in Transport, Njuguna, J., ed.; Woodhead Publishing: Sawston, Cambridge, UK, 2016, 35–52. https://doi.org/10.1016/B978-1-78242-325-6.00002-5
  • 4.
    Zhang W. ; Xu J. Advanced lightweight materials for Automobiles: A review. Materials & Design 2022, 221, 110994. https://doi.org/10.1016/j.matdes.2022.110994
  • 5.
    Liu,Z. Current Progress in Automobile Design and Manufacturing. International Journal of Automotive Manufacturing and Materials 2022, 1(1) 11. https://www.sciltp.com/journals/ijamm/article/view/219
  • 6.
    Giampieri A. ; Ling-Chin J. ; Ma Z. ; et al . A review of the current automotive manufacturing practice from an energy perspective. Applied Energy 2020, 261, 114074. https://doi.org/10.1016/j.apenergy.2019.114074
  • 7.
    Mayyas A. ; Qattawi A. ; Omar M. ; Shan D. Design for sustainability in automotive industry: A comprehensive review. Renewable and Sustainable Energy Reviews 2012, 16(4), 1845–1862. https://doi.org/10.1016/j.rser.2012.01.012
  • 8.
    Kumar V. ; Sutherland J.W. Sustainability of the automotive recycling infrastructure: review of current research and identification of future challenges. International Journal of Sustainable Manufacturing 2008, 1(1–2), 145–167. https://doi.org/10.1504/IJSM.2008.019231
  • 9.
    Mallick, P.K. Thermoplastics and thermoplastic–matrix composites for lightweight automotive structures. In Materials, Design and Manufacturing for Lightweight Vehicles, 2nd ed.; Mallick, P.K., ed.; Woodhead Publishing: Sawston, Cambridge, UK, 2021, 187–228. https://doi.org/10.1016/B978-0-12-818712-8.00005-7
  • 10.
    Das, S. The cost of automotive polymer composites: a review and assessment of DOE's lightweight materials composites research; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2001.
  • 11.
    Witik R.A. ; Payet J. ; Michaud V. ; et al . Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Composites Part A: Applied Science and Manufacturing 2011, 42(11), 1694–1709. https://doi.org/10.1016/j.compositesa.2011.07.024
  • 12.
    Puglia D. ; Biagiotti J. ; Kenny J. A review on natural fibre-based composites—Part II: Application of natural reinforcements in composite materials for automotive industry. Journal of Natural Fibers 2005, 1(3), 23–65. https://doi.org/10.1300/J395v01n03_03
  • 13.
    Dixit S. ; Goel R. ; Dubey A. ; et al . Natural fibre reinforced polymer composite materials-a review. Polymers from Renewable Resources 2017, 8(2), 71–78. https://doi.org/10.1177/204124791700800203
  • 14.
    Rajak D.K. ; Pagar D.D. ; Kumar R. ; et al . Recent progress of reinforcement materials: a comprehensive overview of composite materials. Journal of Materials Research and Technology 2019, 8(6), 6354–6374. https://doi.org/10.1016/j.jmrt.2019.09.068
  • 15.
    Sri Lestari, M. A Study of Basalt Fibres Composite on 23 Cruise Sailing Yacht m . Thesis Master , The University of Liege, Belgium , 2017.
  • 16.
    Yang Y. ; Boom R. ; Irion B. ; et al . Recycling of composite materials. Chemical Engineering and Processing: Process Intensification 2012, 51, 53–68. https://doi.org/10.1016/j.cep.2011.09.007
  • 17.
    Krauklis A.E. ; Karl C.W. ; Gagani A.I. ; et al . Composite material recycling technology—state-of-the-art and sustainable development for the 2020s. Journal of Composites Science 2021, 5(1), 28. https://doi.org/10.3390/jcs5010028
  • 18.
    Khalid M.Y. ; Arif Z.U. ; Ahmed W. ; et al . Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustainable Materials and Technologies 2021, 31, e00382. https://doi.org/10.1016/j.susmat.2021.e00382
  • 19.
    Isa A. ; Nosbi N. ; Che IsmailM. ; et al . A review on recycling of carbon fibres: methods to reinforce and expected fibre composite degradations. Materials 2022, 15(14), 4991. https://doi.org/10.3390/ma15144991
  • 20.
    Khurshid M.F. ; Hengstermann M. ; Hasan M.M.B. ; et al . Recent developments in the processing of waste carbon fibre for thermoplastic composites–A review. Journal of Composite Materials 2020, 54(14), 1925–1944. https://doi.org/10.1177/0021998319886043
  • 21.
    Kim K.S. ; Bae K.M. ; Oh S.Y. ; et al . Trend of carbon fiber-reinforced composites for lightweight vehicles. Elastomers and Composites 2012, 47(1), 65–74. https://doi.org/10.7473/EC.2012.47.1.065
  • 22.
    Zhang J. ; Chevali V.S. ; Wang H. ; et al . Current status of carbon fibre and carbon fibre composites recycling. Composites Part B: Engineering 2020, 193, 108053. https://doi.org/10.1016/j.compositesb.2020.108053
  • 23.
    Pimenta S. ; Pinho S.T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Management 2011, 31(2), 378–392. https://doi.org/10.1016/j.wasman.2010.09.019
  • 24.
    Quan D. ; Farooq U. ; Zhao G. ; et al . Recycled carbon fibre mats for interlayer toughening of carbon fibre/epoxy composites. Materials & Design 2022, 218, 110671. https://doi.org/10.1016/j.matdes.2022.110671
  • 25.
    Brooks R.A. ; Wang H. ; Ding Z. ; et al . A review on stamp forming of continuous fibre-reinforced thermoplastics. International Journal of Lightweight Materials and Manufacture 2022, 5(3), 411–430. https://doi.org/10.1016/j.ijlmm.2022.05.001
  • 26.
    Fazeli M. ; Liu X. ; Rudd C. The effect of waterborne polyurethane coating on the mechanical properties of epoxy-based composite containing recycled carbon fibres. Surfaces and Interfaces 2022, 29, 101684. https://doi.org/10.1016/j.surfin.2021.101684
  • 27.
    Souppez, J.-B.R.G. Structural Design of High Performance Composite Sailing Yachts Under the New BS EN ISO 12215-5. Journal of Sailing Technology 2018, 3, 1–18. https://doi.org/10.5957.jst.2018.02.
  • 28.
    Truelock D. ; Lavroff J. ; Pearson D. ; et al . ISSC committee V.5 special vessels. In Proceedings of the 21st International Ship and Offshore Structures Congress (ISSC 2022), WangX., PeggN., eds.; Vancouver, Canada, 11–15 September 2022.
  • 29.
    ISO. ISO 12215-5:2019 Small craft - Hull construction and scantlings - Part 5: Design pressures for monohulls, design stresses, scantlings determination, 2019, International Organization for Standardization, Geneva, Switzerland. Available online: https://www.iso.org/standard/69552.html (Accessed on 27 February 2023).
  • 30.
    ISO. ISO 527-4:2021 Plastics - Determination of tensile properties - Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites, 2021, International Organization for Standardization, Geneva, Switzerland. Available online: https://www.iso.org/standard/80369.html (Accessed on 27 February 2023).
  • 31.
    Pakdel E. ; Kashi S. ; Varley R. ; et al . Recent progress in recycling carbon fibre reinforced composites and dry carbon fibre wastes. Resources, Conservation and Recycling 2021, 166, 105340. https://doi.org/10.1016/j.resconrec.2020.105340.
  • 32.
    Castillo L. ; Baldwin M. ; Sassine M.P. ; et al . Cumulative exposure to styrene and visual functions. American Journal of Industrial Medicine 2001, 39(4), 351–360. https://doi.org/10.1002/ajim.1025.
  • 33.
    Souppez J.-B.R.G. ; Laci J. Ultimate Strength of Quasi-Isotropic Composites: ISO 12215-5: 2019 Validation. International Journal of Maritime Engineering 2022, 164(A2), 237–246. https://doi.org/10.5750/ijme.v164iA2.1178.
  • 34.
    ISO. ISO 178:2019 Plastics - Determination of flexural properties, 2019, International Organization for Standardization, Geneva, Switzerland. Available online: https://www.iso.org/standard/70513.html (Accessed on 27 February 2023).
  • 35.
    ISO. ISO 14126:1999 Fibre-reinforced plastic composites - Determination of compressive properties in the in-plane direction, 1999, International Organization for Standardization, Geneva, Switzerland. Available online: https://www.iso.org/standard/23638.html (Accessed on 27 February 2023).
  • 36.
    Coleman H.W. ; Steele W .G. Engineering application of experimental uncertainty analysis. AIAA Journal 1995, 33(10), 1888–1896. https://doi.org/10.2514/3.12742.
  • 37.
    Souppez, J.-B.R.G. Ships and Maritime Transportation. In: Springer Handbook of Mechanical Engineering. Grote, K.H., Hefazi, H., eds.; Springer, Cham, Switzerland, 2021, 1139–1164. https://doi.org/10.1007/978-3-030-47035-7_25.
  • 38.
    Belgrano, G. Working load to break load: safety factors in composite yacht structures. In: High Performance Yacht Design Conference, Auckland, New Zealand, Marine Manager, SP Systems, giovanni. belgrano@ spsystems. com. Paper: P2002-7 Proceedings . 2002.
  • 39.
    Asmatulu E. ; Twomey J. ; Overcash M. Recycling of fiber-reinforced composites and direct structural composite recycling concept. Journal of Composite Materials 2014, 48(5), 593–608. https://doi.org/10.1177/0021998313476325.
  • 40.
    Oliveux G. ; Dandy L.O. ; Leeke G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science 2015, 72, 61–99. https://doi.org/10.1016/j.pmatsci.2015.01.004.
Share this article:
How to Cite
Souppez, J.-B. R. G.; Pavar, G. S. Recycled Carbon Fibre Composites in Automotive Manufacturing. International Journal of Automotive Manufacturing and Materials 2023, 2 (1), 3. https://doi.org/10.53941/ijamm0201003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2023 by the authors.