- 1.
Balkwill, F.; Mantovani, A. Inflammation and Cancer: Back to Virchow? Lancet 2001, 357, 539–545. https://doi.org/10.1016/S0140-6736(00)04046-0.
- 2.
Dvorak, H.F. Tumors: Wounds That Do Not Heal. Similarities between Tumor Stroma Generation and Wound Healing. N. Engl. J. Med. 1986, 315, 1650–1659. https://doi.org/10.1056/NEJM198612253152606.
- 3.
Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. https://doi.org/10.1038/nature01322.
- 4.
Kuper, H.; Adami, H.O.; Trichopoulos, D. Infections as a Major Preventable Cause of Human Cancer. J. Intern. Med. 2000, 248, 171–183. https://doi.org/10.1046/j.1365-2796.2000.00742.x.
- 5.
Shacter, E.; Weitzman, S.A. Chronic Inflammation and Cancer. Oncology 2002, 16, 217–226.
- 6.
Ernst, P.B.; Gold, B.D. The Disease Spectrum of Helicobacter Pylori: The Immunopathogenesis of Gastroduodenal Ulcer and Gastric Cancer. Annu. Rev. Microbiol. 2000, 54, 615–640. https://doi.org/10.1146/annurev.micro.54.1.615.
- 7.
Borsig, L.; Wong, R.; Hynes, R.O.; et al. Synergistic Effects of L- and P-Selectin in Facilitating Tumor Metastasis Can Involve Non-Mucin Ligands and Implicate Leukocytes as Enhancers of Metastasis. Proc. Natl. Acad. Sci. USA 2002, 99, 2193–2198. https://doi.org/10.1073/pnas.261704098.
- 8.
Schwitalla, S.; Ziegler, P.K.; Horst, D.; et al. Loss of P53 in Enterocytes Generates an Inflammatory Microenvironment Enabling Invasion and Lymph Node Metastasis of Carcinogen-Induced Colorectal Tumors. Cancer Cell 2013, 23, 93–106. https://doi.org/10.1016/j.ccr.2012.11.014.
- 9.
Komarova, E.A.; Krivokrysenko, V.; Wang, K.; et al. P53 Is a Suppressor of Inflammatory Response in Mice. FASEB J. 2005, 19, 1030–1032. https://doi.org/10.1096/fj.04-3213fje.
- 10.
Pribluda, A.; Elyada, E.; Wiener, Z.; et al. A Senescence-Inflammatory Switch from Cancer-Inhibitory to Cancer-Promoting Mechanism. Cancer Cell 2013, 24, 242–256. https://doi.org/10.1016/j.ccr.2013.06.005.
- 11.
Elyada, E.; Pribluda, A.; Goldstein, R.E.; et al. CKIα Ablation Highlights a Critical Role for P53 in Invasiveness Control. Nature 2011, 470, 409–413. https://doi.org/10.1038/nature09673.
- 12.
Andriani, G.A.; Vijg, J.; Montagna, C. Mechanisms and Consequences of Aneuploidy and Chromosome Instability in the Aging Brain. Mech. Ageing Dev. 2017, 161 Pt. A, 19–36. https://doi.org/10.1016/j.mad.2016.03.007.
- 13.
Liao, W.; Overman, M.J.; Boutin, A.T.; et al. KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell 2019, 35, 559–572.e7. https://doi.org/10.1016/j.ccell.2019.02.008.
- 14.
Quadiri, A.; Prakash, S.; Dhanushkodi, N.R.; et al. Therapeutic Prime/Pull Vaccination of HSV-2-Infected Guinea Pigs with the Ribonucleotide Reductase 2 (RR2) Protein and CXCL11 Chemokine Boosts Antiviral Local Tissue-Resident and Effector Memory CD4+ and CD8+ T Cells and Protects against Recurrent Genital Herpes. J. Virol. 2024, 98, e01596-23. https://doi.org/10.1128/jvi.01596-23.
- 15.
Kortlever, R.M.; Sodir, N.M.; Wilson, C.H.; et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell 2017, 171, 1301–1315.e14. https://doi.org/10.1016/j.cell.2017.11.013.
- 16.
Si, Y.; Zhang, Y.; Chen, Z.; et al. Posttranslational Modification Control of Inflammatory Signaling. Adv. Exp. Med. Biol. 2017, 1024, 37–61. https://doi.org/10.1007/978-981-10-5987-2_2.
- 17.
Fekete, T.; Bencze, D.; Szabo, A.; et al. Regulatory NLRs Control the RLR-Mediated Type I Interferon and Inflammatory Responses in Human Dendritic Cells. Front. Immunol. 2018, 9, 2314. https://doi.org/10.3389/fimmu.2018.02314.
- 18.
Dolasia, K.; Bisht, M.K.; Pradhan, G.; et al. TLRs/NLRs: Shaping the Landscape of Host Immunity. Int. Rev. Immunol. 2018, 37, 3–19. https://doi.org/10.1080/08830185.2017.1397656.
- 19.
Istomin, A.Y.; Godzik, A. Understanding Diversity of Human Innate Immunity Receptors: Analysis of Surface Features of Leucine-Rich Repeat Domains in NLRs and TLRs. BMC Immunol. 2009, 10, 48. https://doi.org/10.1186/1471-2172-10-48.
- 20.
Wieland, C.W.; Florquin, S.; Maris, N.A.; et al. The MyD88-Dependent, but Not the MyD88-Independent, Pathway of TLR4 Signaling Is Important in Clearing Nontypeable Haemophilus Influenzae from the Mouse Lung. J. Immunol. 2005, 175, 6042–6049. https://doi.org/10.4049/jimmunol.175.9.6042.
- 21.
Broad, A.; Kirby, J.A.; Jones, D.E.J.; et al. Toll-like Receptor Interactions: Tolerance of MyD88-Dependent Cytokines but Enhancement of MyD88-Independent Interferon-Beta Production. Immunology 2007, 120, 103–111. https://doi.org/10.1111/j.1365-2567.2006.02485.x.
- 22.
Triantafilou, M.; Gamper, F.G.J.; Haston, R.M.; et al. Membrane Sorting of Toll-like Receptor (TLR)-2/6 and TLR2/1 Heterodimers at the Cell Surface Determines Heterotypic Associations with CD36 and Intracellular Targeting. J. Biol. Chem. 2006, 281, 31002–31011. https://doi.org/10.1074/jbc.M602794200.
- 23.
Karnati, H.K.; Pasupuleti, S.R.; Kandi, R.; et al. TLR-4 Signalling Pathway: MyD88 Independent Pathway up-Regulation in Chicken Breeds upon LPS Treatment. Vet. Res. Commun. 2015, 39, 73–78. https://doi.org/10.1007/s11259-014-9621-2.
- 24.
Chamaillard, M.; Girardin, S.E.; Viala, J.; et al. Nods, Nalps and Naip: Intracellular Regulators of Bacterial-Induced Inflammation. Cell. Microbiol. 2003, 5, 581–592. https://doi.org/10.1046/j.1462-5822.2003.00304.x.
- 25.
Inohara, N.; Nuñez, G. NODs: Intracellular Proteins Involved in Inflammation and Apoptosis. Nat. Rev. Immunol. 2003, 3, 371–382. https://doi.org/10.1038/nri1086.
- 26.
Ting, J.P.-Y.; Lovering, R.C.; Alnemri, E.S.; et al. The NLR Gene Family: A Standard Nomenclature. Immunity 2008, 28, 285–287. https://doi.org/10.1016/j.immuni.2008.02.005.
- 27.
Wagner, R.N.; Proell, M.; Kufer, T.A.; et al. Evaluation of Nod-like Receptor (NLR) Effector Domain Interactions. PLoS ONE 2009, 4, e4931. https://doi.org/10.1371/journal.pone.0004931.
- 28.
Zhou, R.; Tardivel, A.; Thorens, B.; et al. Thioredoxin-Interacting Protein Links Oxidative Stress to Inflammasome Activation. Nat. Immunol. 2010, 11, 136–140. https://doi.org/10.1038/ni.1831.
- 29.
Davis, B.K.; Wen, H.; Ting, J.P.-Y. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 2011, 29, 707–735.
- 30.
Man, S.M.; Karki, R.; Kanneganti, T.-D. Molecular Mechanisms and Functions of Pyroptosis, Inflammatory Caspases and Inflammasomes in Infectious Diseases. Immunol. Rev. 2017, 277, 61–75. https://doi.org/10.1111/imr.12534.
- 31.
Schroder, K.; Tschopp, J. The Inflammasomes. Cell 2010, 140, 821–832. https://doi.org/10.1016/j.cell.2010.01.040.
- 32.
Hu, B.; Elinav, E.; Huber, S.; et al. Inflammation-Induced Tumorigenesis in the Colon Is Regulated by Caspase-1 and NLRC4. Proc. Natl. Acad. Sci. USA 2010, 107, 21635–21640. https://doi.org/10.1073/pnas.1016814108.
- 33.
Xu, B.; Jiang, M.; Chu, Y.; et al. Gasdermin D Plays a Key Role as a Pyroptosis Executor of Non-Alcoholic Steatohepatitis in Humans and Mice. J. Hepatol. 2018, 68, 773–782. https://doi.org/10.1016/j.jhep.2017.11.040.
- 34.
Xiao, J.; Wang, C.; Yao, J.-C.; et al. Gasdermin D Mediates the Pathogenesis of Neonatal-Onset Multisystem Inflammatory Disease in Mice. PLoS Biol. 2018, 16, e3000047. https://doi.org/10.1371/journal.pbio.3000047.
- 35.
Kanneganti, A.; Malireddi, R.K.S.; Saavedra, P.H. V.; et al. GSDMD Is Critical for Autoinflammatory Pathology in a Mouse Model of Familial Mediterranean Fever. J. Exp. Med. 2018, 215, 1519–1529. https://doi.org/10.1084/jem.20172060.
- 36.
Feng, S.; Fox, D.; Man, S.M. Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death. J. Mol. Biol. 2018, 430, 3068–3080. https://doi.org/10.1016/j.jmb.2018.07.002.
- 37.
Xue, Y.; Enosi Tuipulotu, D.; Tan, W.H.; et al. Emerging Activators and Regulators of Inflammasomes and Pyroptosis. Trends Immunol. 2019, 40, 1035–1052. https://doi.org/10.1016/j.it.2019.09.005.
- 38.
Pikarsky, E.; Porat, R.M.; Stein, I.; et al. NF-KappaB Functions as a Tumour Promoter in Inflammation-Associated Cancer. Nature 2004, 431, 461–466. https://doi.org/10.1038/nature02924.
- 39.
Chen, L.; Huang, C.-F.; Li, Y.-C.; et al. Blockage of the NLRP3 Inflammasome by MCC950 Improves Anti-Tumor Immune Responses in Head and Neck Squamous Cell Carcinoma. Cell. Mol. Life Sci. 2018, 75, 2045–2058. https://doi.org/10.1007/s00018-017-2720-9.
- 40.
Feng, X.; Luo, Q.; Zhang, H.; et al. The Role of NLRP3 Inflammasome in 5-Fluorouracil Resistance of Oral Squamous Cell Carcinoma. J. Exp. Clin. Cancer Res. 2017, 36, 81. https://doi.org/10.1186/s13046-017-0553-x.
- 41.
McAllister, S.S.; Weinberg, R.A. The Tumour-Induced Systemic Environment as a Critical Regulator of Cancer Progression and Metastasis. Nat. Cell Biol. 2014, 16, 717–727. https://doi.org/10.1038/ncb3015.
- 42.
Lega, I.C.; Lipscombe, L.L. Review: Diabetes, Obesity, and Cancer-Pathophysiology and Clinical Implications. Endocr. Rev. 2020, 41, 33–52. https://doi.org/10.1210/endrev/bnz014.
- 43.
Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. https://doi.org/10.1016/j.immuni.2019.06.025.
- 44.
Wildes, T.J.; DiVita Dean, B.; Flores, C.T. Myelopoiesis during Solid Cancers and Strategies for Immunotherapy. Cells 2021, 10, 968. https://doi.org/10.3390/cells10050968.
- 45.
Zhou, J.; Tang, Z.; Gao, S.; et al. Tumor-Associated Macrophages: Recent Insights and Therapies. Front. Oncol. 2020, 10, 188. https://doi.org/10.3389/fonc.2020.00188.
- 46.
Ng, M.S.F.; Kwok, I.; Tan, L.; et al. Deterministic Reprogramming of Neutrophils within Tumors. Science 2024, 383, eadf6493. https://doi.org/10.1126/science.adf6493.
- 47.
Fridman, W.H.; Zitvogel, L.; Sautès-Fridman, C.; et al. The Immune Contexture in Cancer Prognosis and Treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734. https://doi.org/10.1038/nrclinonc.2017.101.
- 48.
Singh, V.; Singh, R.; Kushwaha, R.; et al. The Molecular Role of HIF1α Is Elucidated in Chronic Myeloid Leukemia. Front. Oncol. 2022, 12, 912942. https://doi.org/10.3389/fonc.2022.912942.
- 49.
Kashif, M.; Quadiri, A.; Singh, A.P. Essential Role of a Plasmodium Berghei Heat Shock Protein (PBANKA_0938300) in Gametocyte Development. Sci. Rep. 2021, 11, 23640. https://doi.org/10.1038/s41598-021-03059-4.
- 50.
Veglia, F.; Sanseviero, E.; Gabrilovich, D.I. Myeloid-Derived Suppressor Cells in the Era of Increasing Myeloid Cell Diversity. Nat. Rev. Immunol. 2021, 21, 485–498. https://doi.org/10.1038/s41577-020-00490-y.
- 51.
Aliazis, K.; Yenyuwadee, S.; Phikulsod, P.; et al. Emergency Myelopoiesis in Solid Cancers. Br. J. Haematol. 2024, 205, 798–811. https://doi.org/10.1111/bjh.19656.
- 52.
Bui, T.M.; Yalom, L.K.; Ning, E.; et al. Tissue-Specific Reprogramming Leads to Angiogenic Neutrophil Specialization and Tumor Vascularization in Colorectal Cancer. J. Clin. Investig. 2024, 134. https://doi.org/10.1172/JCI174545.
- 53.
Singh, V.; Singh, R.; Mahdi, A.A.; et al. The Bioengineered HALOA Complex Induces Anoikis in Chronic Myeloid Leukemia Cells by Targeting the BCR-ABL/Notch/Ikaros/Redox/Inflammation Axis. J. Med. Life 2022, 15, 606–616. https://doi.org/10.25122/jml-2021-0230.
- 54.
LaMarche, N.M.; Hegde, S.; Park, M.D.; et al. An IL-4 Signalling Axis in Bone Marrow Drives pro-Tumorigenic Myelopoiesis. Nature 2024, 625, 166–174. https://doi.org/10.1038/s41586-023-06797-9.
- 55.
Zilio, S.; Bicciato, S.; Weed, D.; et al. CCR1 and CCR5 Mediate Cancer-Induced Myelopoiesis and Differentiation of Myeloid Cells in the Tumor. J. Immunother. Cancer 2022, 10. https://doi.org/10.1136/jitc-2021-003131.
- 56.
Dunn, G.P.; Bruce, A.T.; Ikeda, H.; et al. Cancer Immunoediting: From Immunosurveillance to Tumor Escape. Nat. Immunol. 2002, 3, 991–998. https://doi.org/10.1038/ni1102-991.
- 57.
Shankaran, V.; Ikeda, H.; Bruce, A.T.; et al. IFNgamma and Lymphocytes Prevent Primary Tumour Development and Shape Tumour Immunogenicity. Nature 2001, 410, 1107–1111. https://doi.org/10.1038/35074122.
- 58.
Kaplan, D.H.; Shankaran, V.; Dighe, A.S.; et al. Demonstration of an Interferon Gamma-Dependent Tumor Surveillance System in Immunocompetent Mice. Proc. Natl. Acad. Sci. USA 1998, 95, 7556–7561. https://doi.org/10.1073/pnas.95.13.7556.
- 59.
Koebel, C.M.; Vermi, W.; Swann, J.B.; et al. Adaptive Immunity Maintains Occult Cancer in an Equilibrium State. Nature 2007, 450, 903–907. https://doi.org/10.1038/nature06309.
- 60.
Swann, J.B.; Vesely, M.D.; Silva, A.; et al. Demonstration of Inflammation-Induced Cancer and Cancer Immunoediting during Primary Tumorigenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 652–656. https://doi.org/10.1073/pnas.0708594105.
- 61.
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, Inflammation, and Cancer. Cell 2010, 140, 883–899. https://doi.org/10.1016/j.cell.2010.01.025.
- 62.
Smyth, M.J.; Thia, K.Y.; Street, S.E.; et al. Differential Tumor Surveillance by Natural Killer (NK) and NKT Cells. J. Exp. Med. 2000, 191, 661–668. https://doi.org/10.1084/jem.191.4.661.
- 63.
Ben-Baruch, A. Inflammation-Associated Immune Suppression in Cancer: The Roles Played by Cytokines, Chemokines and Additional Mediators. Semin. Cancer Biol. 2006, 16, 38–52. https://doi.org/10.1016/j.semcancer.2005.07.006.
- 64.
Ghiringhelli, F.; Apetoh, L.; Tesniere, A.; et al. Activation of the NLRP3 Inflammasome in Dendritic Cells Induces IL-1beta-Dependent Adaptive Immunity against Tumors. Nat. Med. 2009, 15, 1170–1178. https://doi.org/10.1038/nm.2028.
- 65.
Bosetti, C.; Santucci, C.; Gallus, S.; et al. Aspirin and the Risk of Colorectal and Other Digestive Tract Cancers: An Updated Meta-Analysis through 2019. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 558–568. https://doi.org/10.1016/j.annonc.2020.02.012.
- 66.
Diakos, C.I.; Charles, K.A.; McMillan, D.C.; et al. Cancer-Related Inflammation and Treatment Effectiveness. Lancet Oncol. 2014, 15, e493–e503. https://doi.org/10.1016/S1470-2045(14)70263-3.
- 67.
Yang, J.D.; Hainaut, P.; Gores, G.J.; et al. A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. https://doi.org/10.1038/s41575-019-0186-y.
- 68.
Germano, G.; Lamba, S.; Rospo, G.; et al. Inactivation of DNA Repair Triggers Neoantigen Generation and Impairs Tumour Growth. Nature 2017, 552, 116–120. https://doi.org/10.1038/nature24673.
- 69.
Zhou, X.; Tu, S.; Wang, C.; et al. Phase I trial of fourth-generation anti-CD19 chimeric antigen receptor T cells against relapsed or refractory B cell non-Hodgkin lymphomas. Front. Immunol. 2020, 11, 564099.
- 70.
Pitt, J.M.; Vétizou, M.; Daillère, R.; et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and-extrinsic factors. Immunity 2016, 44, 1255–1269.
- 71.
June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; et al. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365.