2507000899
  • Open Access
  • Review
Inflammation-Driven Tumorigenesis: Mechanisms, Immune Evasion, and Therapeutic Strategies
  • Vivek Singh 1,   
  • Mohmmad Kashif 2,   
  • Roma Pahwa 3, *,   
  • Anand Singh 1, *

Received: 11 Mar 2025 | Accepted: 18 Mar 2025 | Published: 02 Jul 2025

Abstract

Cancer is a complicated disease influenced by genetic, environmental, and immunological factors. Among these, chronic inflammation has emerged as a critical factor in tumor initiation, progression, and metastasis. The inflammatory tumor microenvironment, enriched with cytokines, chemokines, and immune cells, fosters immune evasion, angiogenesis, and genomic instability and key signaling pathways, including NF-κB, STAT3, and COX-2/PGE2, bridge inflammation and oncogenesis, making them promising therapeutic targets. Despite the tumor-promoting effects of chronic inflammation, the immune system also plays a crucial role in immunosurveillance, eliminating malignant cells. However, tumors develop escape mechanisms, such as immune checkpoint activation and recruitment of immunosuppressive cells, enabling survival and metastasis. Current therapeutic strategies target inflammation-driven tumorigenesis through nonsteroidal anti-inflammatory drugs (NSAIDs), cytokine inhibitors, immune checkpoint inhibitors, and combination therapies. Understanding the balance between pro- and antitumor immunity is essential for advancing novel therapeutic interventions. This review highlights recent findings on inflammation-driven cancer progression, the molecular mechanisms involved, and emerging strategies to harness inflammatory pathways for cancer treatment.

References 

  • 1.
    Balkwill, F.; Mantovani, A. Inflammation and Cancer: Back to Virchow? Lancet 2001, 357, 539–545. https://doi.org/10.1016/S0140-6736(00)04046-0.
  • 2.
    Dvorak, H.F. Tumors: Wounds That Do Not Heal. Similarities between Tumor Stroma Generation and Wound Healing. N. Engl. J. Med. 1986, 315, 1650–1659. https://doi.org/10.1056/NEJM198612253152606.
  • 3.
    Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. https://doi.org/10.1038/nature01322.
  • 4.
    Kuper, H.; Adami, H.O.; Trichopoulos, D. Infections as a Major Preventable Cause of Human Cancer. J. Intern. Med. 2000, 248, 171–183. https://doi.org/10.1046/j.1365-2796.2000.00742.x.
  • 5.
    Shacter, E.; Weitzman, S.A. Chronic Inflammation and Cancer. Oncology 2002, 16, 217–226.
  • 6.
    Ernst, P.B.; Gold, B.D. The Disease Spectrum of Helicobacter Pylori: The Immunopathogenesis of Gastroduodenal Ulcer and Gastric Cancer. Annu. Rev. Microbiol. 2000, 54, 615–640. https://doi.org/10.1146/annurev.micro.54.1.615.
  • 7.
    Borsig, L.; Wong, R.; Hynes, R.O.; et al. Synergistic Effects of L- and P-Selectin in Facilitating Tumor Metastasis Can Involve Non-Mucin Ligands and Implicate Leukocytes as Enhancers of Metastasis. Proc. Natl. Acad. Sci. USA 2002, 99, 2193–2198. https://doi.org/10.1073/pnas.261704098.
  • 8.
    Schwitalla, S.; Ziegler, P.K.; Horst, D.; et al. Loss of P53 in Enterocytes Generates an Inflammatory Microenvironment Enabling Invasion and Lymph Node Metastasis of Carcinogen-Induced Colorectal Tumors. Cancer Cell 2013, 23, 93–106. https://doi.org/10.1016/j.ccr.2012.11.014.
  • 9.
    Komarova, E.A.; Krivokrysenko, V.; Wang, K.; et al. P53 Is a Suppressor of Inflammatory Response in Mice. FASEB J. 2005, 19, 1030–1032. https://doi.org/10.1096/fj.04-3213fje.
  • 10.
    Pribluda, A.; Elyada, E.; Wiener, Z.; et al. A Senescence-Inflammatory Switch from Cancer-Inhibitory to Cancer-Promoting Mechanism. Cancer Cell 2013, 24, 242–256. https://doi.org/10.1016/j.ccr.2013.06.005.
  • 11.
    Elyada, E.; Pribluda, A.; Goldstein, R.E.; et al. CKIα Ablation Highlights a Critical Role for P53 in Invasiveness Control. Nature 2011, 470, 409–413. https://doi.org/10.1038/nature09673.
  • 12.
    Andriani, G.A.; Vijg, J.; Montagna, C. Mechanisms and Consequences of Aneuploidy and Chromosome Instability in the Aging Brain. Mech. Ageing Dev. 2017, 161 Pt. A, 19–36. https://doi.org/10.1016/j.mad.2016.03.007.
  • 13.
    Liao, W.; Overman, M.J.; Boutin, A.T.; et al. KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Cancer Cell 2019, 35, 559–572.e7. https://doi.org/10.1016/j.ccell.2019.02.008.
  • 14.
    Quadiri, A.; Prakash, S.; Dhanushkodi, N.R.; et al. Therapeutic Prime/Pull Vaccination of HSV-2-Infected Guinea Pigs with the Ribonucleotide Reductase 2 (RR2) Protein and CXCL11 Chemokine Boosts Antiviral Local Tissue-Resident and Effector Memory CD4+ and CD8+ T Cells and Protects against Recurrent Genital Herpes. J. Virol. 2024, 98, e01596-23. https://doi.org/10.1128/jvi.01596-23.
  • 15.
    Kortlever, R.M.; Sodir, N.M.; Wilson, C.H.; et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell 2017, 171, 1301–1315.e14. https://doi.org/10.1016/j.cell.2017.11.013.
  • 16.
    Si, Y.; Zhang, Y.; Chen, Z.; et al. Posttranslational Modification Control of Inflammatory Signaling. Adv. Exp. Med. Biol. 2017, 1024, 37–61. https://doi.org/10.1007/978-981-10-5987-2_2.
  • 17.
    Fekete, T.; Bencze, D.; Szabo, A.; et al. Regulatory NLRs Control the RLR-Mediated Type I Interferon and Inflammatory Responses in Human Dendritic Cells. Front. Immunol. 2018, 9, 2314. https://doi.org/10.3389/fimmu.2018.02314.
  • 18.
    Dolasia, K.; Bisht, M.K.; Pradhan, G.; et al. TLRs/NLRs: Shaping the Landscape of Host Immunity. Int. Rev. Immunol. 2018, 37, 3–19. https://doi.org/10.1080/08830185.2017.1397656.
  • 19.
    Istomin, A.Y.; Godzik, A. Understanding Diversity of Human Innate Immunity Receptors: Analysis of Surface Features of Leucine-Rich Repeat Domains in NLRs and TLRs. BMC Immunol. 2009, 10, 48. https://doi.org/10.1186/1471-2172-10-48.
  • 20.
    Wieland, C.W.; Florquin, S.; Maris, N.A.; et al. The MyD88-Dependent, but Not the MyD88-Independent, Pathway of TLR4 Signaling Is Important in Clearing Nontypeable Haemophilus Influenzae from the Mouse Lung. J. Immunol. 2005, 175, 6042–6049. https://doi.org/10.4049/jimmunol.175.9.6042.
  • 21.
    Broad, A.; Kirby, J.A.; Jones, D.E.J.; et al. Toll-like Receptor Interactions: Tolerance of MyD88-Dependent Cytokines but Enhancement of MyD88-Independent Interferon-Beta Production. Immunology 2007, 120, 103–111. https://doi.org/10.1111/j.1365-2567.2006.02485.x.
  • 22.
    Triantafilou, M.; Gamper, F.G.J.; Haston, R.M.; et al. Membrane Sorting of Toll-like Receptor (TLR)-2/6 and TLR2/1 Heterodimers at the Cell Surface Determines Heterotypic Associations with CD36 and Intracellular Targeting. J. Biol. Chem. 2006, 281, 31002–31011. https://doi.org/10.1074/jbc.M602794200.
  • 23.
    Karnati, H.K.; Pasupuleti, S.R.; Kandi, R.; et al. TLR-4 Signalling Pathway: MyD88 Independent Pathway up-Regulation in Chicken Breeds upon LPS Treatment. Vet. Res. Commun. 2015, 39, 73–78. https://doi.org/10.1007/s11259-014-9621-2.
  • 24.
    Chamaillard, M.; Girardin, S.E.; Viala, J.; et al. Nods, Nalps and Naip: Intracellular Regulators of Bacterial-Induced Inflammation. Cell. Microbiol. 2003, 5, 581–592. https://doi.org/10.1046/j.1462-5822.2003.00304.x.
  • 25.
    Inohara, N.; Nuñez, G. NODs: Intracellular Proteins Involved in Inflammation and Apoptosis. Nat. Rev. Immunol. 2003, 3, 371–382. https://doi.org/10.1038/nri1086.
  • 26.
    Ting, J.P.-Y.; Lovering, R.C.; Alnemri, E.S.; et al. The NLR Gene Family: A Standard Nomenclature. Immunity 2008, 28, 285–287. https://doi.org/10.1016/j.immuni.2008.02.005.
  • 27.
    Wagner, R.N.; Proell, M.; Kufer, T.A.; et al. Evaluation of Nod-like Receptor (NLR) Effector Domain Interactions. PLoS ONE 2009, 4, e4931. https://doi.org/10.1371/journal.pone.0004931.
  • 28.
    Zhou, R.; Tardivel, A.; Thorens, B.; et al. Thioredoxin-Interacting Protein Links Oxidative Stress to Inflammasome Activation. Nat. Immunol. 2010, 11, 136–140. https://doi.org/10.1038/ni.1831.
  • 29.
    Davis, B.K.; Wen, H.; Ting, J.P.-Y. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 2011, 29, 707–735.
  • 30.
    Man, S.M.; Karki, R.; Kanneganti, T.-D. Molecular Mechanisms and Functions of Pyroptosis, Inflammatory Caspases and Inflammasomes in Infectious Diseases. Immunol. Rev. 2017, 277, 61–75. https://doi.org/10.1111/imr.12534.
  • 31.
    Schroder, K.; Tschopp, J. The Inflammasomes. Cell 2010, 140, 821–832. https://doi.org/10.1016/j.cell.2010.01.040.
  • 32.
    Hu, B.; Elinav, E.; Huber, S.; et al. Inflammation-Induced Tumorigenesis in the Colon Is Regulated by Caspase-1 and NLRC4. Proc. Natl. Acad. Sci. USA 2010, 107, 21635–21640. https://doi.org/10.1073/pnas.1016814108.
  • 33.
    Xu, B.; Jiang, M.; Chu, Y.; et al. Gasdermin D Plays a Key Role as a Pyroptosis Executor of Non-Alcoholic Steatohepatitis in Humans and Mice. J. Hepatol. 2018, 68, 773–782. https://doi.org/10.1016/j.jhep.2017.11.040.
  • 34.
    Xiao, J.; Wang, C.; Yao, J.-C.; et al. Gasdermin D Mediates the Pathogenesis of Neonatal-Onset Multisystem Inflammatory Disease in Mice. PLoS Biol. 2018, 16, e3000047. https://doi.org/10.1371/journal.pbio.3000047.
  • 35.
    Kanneganti, A.; Malireddi, R.K.S.; Saavedra, P.H. V.; et al. GSDMD Is Critical for Autoinflammatory Pathology in a Mouse Model of Familial Mediterranean Fever. J. Exp. Med. 2018, 215, 1519–1529. https://doi.org/10.1084/jem.20172060.
  • 36.
    Feng, S.; Fox, D.; Man, S.M. Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death. J. Mol. Biol. 2018, 430, 3068–3080. https://doi.org/10.1016/j.jmb.2018.07.002.
  • 37.
    Xue, Y.; Enosi Tuipulotu, D.; Tan, W.H.; et al. Emerging Activators and Regulators of Inflammasomes and Pyroptosis. Trends Immunol. 2019, 40, 1035–1052. https://doi.org/10.1016/j.it.2019.09.005.
  • 38.
    Pikarsky, E.; Porat, R.M.; Stein, I.; et al. NF-KappaB Functions as a Tumour Promoter in Inflammation-Associated Cancer. Nature 2004, 431, 461–466. https://doi.org/10.1038/nature02924.
  • 39.
    Chen, L.; Huang, C.-F.; Li, Y.-C.; et al. Blockage of the NLRP3 Inflammasome by MCC950 Improves Anti-Tumor Immune Responses in Head and Neck Squamous Cell Carcinoma. Cell. Mol. Life Sci. 2018, 75, 2045–2058. https://doi.org/10.1007/s00018-017-2720-9.
  • 40.
    Feng, X.; Luo, Q.; Zhang, H.; et al. The Role of NLRP3 Inflammasome in 5-Fluorouracil Resistance of Oral Squamous Cell Carcinoma. J. Exp. Clin. Cancer Res. 2017, 36, 81. https://doi.org/10.1186/s13046-017-0553-x.
  • 41.
    McAllister, S.S.; Weinberg, R.A. The Tumour-Induced Systemic Environment as a Critical Regulator of Cancer Progression and Metastasis. Nat. Cell Biol. 2014, 16, 717–727. https://doi.org/10.1038/ncb3015.
  • 42.
    Lega, I.C.; Lipscombe, L.L. Review: Diabetes, Obesity, and Cancer-Pathophysiology and Clinical Implications. Endocr. Rev. 2020, 41, 33–52. https://doi.org/10.1210/endrev/bnz014.
  • 43.
    Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. https://doi.org/10.1016/j.immuni.2019.06.025.
  • 44.
    Wildes, T.J.; DiVita Dean, B.; Flores, C.T. Myelopoiesis during Solid Cancers and Strategies for Immunotherapy. Cells 2021, 10, 968. https://doi.org/10.3390/cells10050968.
  • 45.
    Zhou, J.; Tang, Z.; Gao, S.; et al. Tumor-Associated Macrophages: Recent Insights and Therapies. Front. Oncol. 2020, 10, 188. https://doi.org/10.3389/fonc.2020.00188.
  • 46.
    Ng, M.S.F.; Kwok, I.; Tan, L.; et al. Deterministic Reprogramming of Neutrophils within Tumors. Science 2024, 383, eadf6493. https://doi.org/10.1126/science.adf6493.
  • 47.
    Fridman, W.H.; Zitvogel, L.; Sautès-Fridman, C.; et al. The Immune Contexture in Cancer Prognosis and Treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734. https://doi.org/10.1038/nrclinonc.2017.101.
  • 48.
    Singh, V.; Singh, R.; Kushwaha, R.; et al. The Molecular Role of HIF1α Is Elucidated in Chronic Myeloid Leukemia. Front. Oncol. 2022, 12, 912942. https://doi.org/10.3389/fonc.2022.912942.
  • 49.
    Kashif, M.; Quadiri, A.; Singh, A.P. Essential Role of a Plasmodium Berghei Heat Shock Protein (PBANKA_0938300) in Gametocyte Development. Sci. Rep. 2021, 11, 23640. https://doi.org/10.1038/s41598-021-03059-4.
  • 50.
    Veglia, F.; Sanseviero, E.; Gabrilovich, D.I. Myeloid-Derived Suppressor Cells in the Era of Increasing Myeloid Cell Diversity. Nat. Rev. Immunol. 2021, 21, 485–498. https://doi.org/10.1038/s41577-020-00490-y.
  • 51.
    Aliazis, K.; Yenyuwadee, S.; Phikulsod, P.; et al. Emergency Myelopoiesis in Solid Cancers. Br. J. Haematol. 2024, 205, 798–811. https://doi.org/10.1111/bjh.19656.
  • 52.
    Bui, T.M.; Yalom, L.K.; Ning, E.; et al. Tissue-Specific Reprogramming Leads to Angiogenic Neutrophil Specialization and Tumor Vascularization in Colorectal Cancer. J. Clin. Investig. 2024, 134. https://doi.org/10.1172/JCI174545.
  • 53.
    Singh, V.; Singh, R.; Mahdi, A.A.; et al. The Bioengineered HALOA Complex Induces Anoikis in Chronic Myeloid Leukemia Cells by Targeting the BCR-ABL/Notch/Ikaros/Redox/Inflammation Axis. J. Med. Life 2022, 15, 606–616. https://doi.org/10.25122/jml-2021-0230.
  • 54.
    LaMarche, N.M.; Hegde, S.; Park, M.D.; et al. An IL-4 Signalling Axis in Bone Marrow Drives pro-Tumorigenic Myelopoiesis. Nature 2024, 625, 166–174. https://doi.org/10.1038/s41586-023-06797-9.
  • 55.
    Zilio, S.; Bicciato, S.; Weed, D.; et al. CCR1 and CCR5 Mediate Cancer-Induced Myelopoiesis and Differentiation of Myeloid Cells in the Tumor. J. Immunother. Cancer 2022, 10. https://doi.org/10.1136/jitc-2021-003131.
  • 56.
    Dunn, G.P.; Bruce, A.T.; Ikeda, H.; et al. Cancer Immunoediting: From Immunosurveillance to Tumor Escape. Nat. Immunol. 2002, 3, 991–998. https://doi.org/10.1038/ni1102-991.
  • 57.
    Shankaran, V.; Ikeda, H.; Bruce, A.T.; et al. IFNgamma and Lymphocytes Prevent Primary Tumour Development and Shape Tumour Immunogenicity. Nature 2001, 410, 1107–1111. https://doi.org/10.1038/35074122.
  • 58.
    Kaplan, D.H.; Shankaran, V.; Dighe, A.S.; et al. Demonstration of an Interferon Gamma-Dependent Tumor Surveillance System in Immunocompetent Mice. Proc. Natl. Acad. Sci. USA 1998, 95, 7556–7561. https://doi.org/10.1073/pnas.95.13.7556.
  • 59.
    Koebel, C.M.; Vermi, W.; Swann, J.B.; et al. Adaptive Immunity Maintains Occult Cancer in an Equilibrium State. Nature 2007, 450, 903–907. https://doi.org/10.1038/nature06309.
  • 60.
    Swann, J.B.; Vesely, M.D.; Silva, A.; et al. Demonstration of Inflammation-Induced Cancer and Cancer Immunoediting during Primary Tumorigenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 652–656. https://doi.org/10.1073/pnas.0708594105.
  • 61.
    Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, Inflammation, and Cancer. Cell 2010, 140, 883–899. https://doi.org/10.1016/j.cell.2010.01.025.
  • 62.
    Smyth, M.J.; Thia, K.Y.; Street, S.E.; et al. Differential Tumor Surveillance by Natural Killer (NK) and NKT Cells. J. Exp. Med. 2000, 191, 661–668. https://doi.org/10.1084/jem.191.4.661.
  • 63.
    Ben-Baruch, A. Inflammation-Associated Immune Suppression in Cancer: The Roles Played by Cytokines, Chemokines and Additional Mediators. Semin. Cancer Biol. 2006, 16, 38–52. https://doi.org/10.1016/j.semcancer.2005.07.006.
  • 64.
    Ghiringhelli, F.; Apetoh, L.; Tesniere, A.; et al. Activation of the NLRP3 Inflammasome in Dendritic Cells Induces IL-1beta-Dependent Adaptive Immunity against Tumors. Nat. Med. 2009, 15, 1170–1178. https://doi.org/10.1038/nm.2028.
  • 65.
    Bosetti, C.; Santucci, C.; Gallus, S.; et al. Aspirin and the Risk of Colorectal and Other Digestive Tract Cancers: An Updated Meta-Analysis through 2019. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 558–568. https://doi.org/10.1016/j.annonc.2020.02.012.
  • 66.
    Diakos, C.I.; Charles, K.A.; McMillan, D.C.; et al. Cancer-Related Inflammation and Treatment Effectiveness. Lancet Oncol. 2014, 15, e493–e503. https://doi.org/10.1016/S1470-2045(14)70263-3.
  • 67.
    Yang, J.D.; Hainaut, P.; Gores, G.J.; et al. A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. https://doi.org/10.1038/s41575-019-0186-y.
  • 68.
    Germano, G.; Lamba, S.; Rospo, G.; et al. Inactivation of DNA Repair Triggers Neoantigen Generation and Impairs Tumour Growth. Nature 2017, 552, 116–120. https://doi.org/10.1038/nature24673.
  • 69.
    Zhou, X.; Tu, S.; Wang, C.; et al. Phase I trial of fourth-generation anti-CD19 chimeric antigen receptor T cells against relapsed or refractory B cell non-Hodgkin lymphomas. Front. Immunol. 2020, 11, 564099.
  • 70.
    Pitt, J.M.; Vétizou, M.; Daillère, R.; et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and-extrinsic factors. Immunity 2016, 44, 1255–1269.
  • 71.
    June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; et al. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365.
Share this article:
How to Cite
Singh, V.; Kashif, M.; Pahwa, R.; Singh, A. Inflammation-Driven Tumorigenesis: Mechanisms, Immune Evasion, and Therapeutic Strategies. International Journal of Clinical and Translational Medicine 2025, 1 (3), 3. https://doi.org/10.53941/ijctm.2025.1000017.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.