2507000901
  • Open Access
  • Original Research Articles
Isolation and Expansion of Clinical Grade T Regulatory Cells for GvHD Prophylaxis
  • Pappanaicken Kumaresan 1, *, †,   
  • Sourindra Maiti 2,   
  • Paul J. Hauser 2,   
  • Janos Roszik 3,   
  • Harjeet Singh 2,   
  • Chetan Dhamne 2, 4, †

Received: 12 Apr 2025 | Accepted: 01 May 2025 | Published: 02 Jul 2025

Abstract

In hematopoietic stem cell transplantation (HSCT), donor-derived allogeneic T cells contribute to the graft-versus-tumor (GVT) effect but can also trigger graft-versus-host disease (GvHD), a major source of post-transplant morbidity and mortality. Regulatory T cells (Tregs), particularly FoxP3⁺ Tregs, play a pivotal role in promoting immune tolerance and preventing GvHD, as established in murine models. Translating these findings to human therapy requires the isolation and expansion of pure, stable Treg populations suitable for clinical infusion. This study investigates whether clinical-grade CD45RA⁺ naïve Tregs—known for their stem-like properties and enhanced persistence—can be isolated and expanded while retaining their phenotype and immunosuppressive function. Peripheral blood mononuclear cells (PBMCs) were used to isolate naïve Tregs defined as CD45RA⁺CD4⁺CD25⁺CD127. Artificial antigen-presenting cells (aAPCs) derived from genetically engineered K562 cells expressing CD64, CD86, and CD137L were loaded with OKT3 monoclonal antibody to stimulate Treg cell expansion. Tregs were re-stimulated on days 0 and 10 and assessed on day 21 using flow cytometry, CFSE suppression assays, and TCR repertoire analysis. Results showed that CD45RA⁺ Tregs expanded approximately 500-fold, compared to 200-fold for CD45RA Tregs, with >80% maintaining FoxP3 expression. Cytokine production remained low, with <5% IL-2 and <2% IFNγ and TNFα. TCR analysis revealed a maintained broad polyclonal repertoire, supporting the diversity and functional stability of expanded Tregs. This study demonstrates a feasible and scalable method for generating clinical-grade, stable, and suppressive CD45RA⁺ Tregs suitable for immunotherapy. These findings support further clinical trials evaluating their efficacy in preventing or treating GvHD in HSCT recipients.

References 

  • 1.
    Blazar, B.R.; Hill, G.R.; Murphy, W.J. Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat. Rev. Clin. Oncol. 2020, 17, 475–492. https://doi.org/10.1038/s41571-020-0356-4.
  • 2.
    Welniak, L.A.; Blazar, B.R.; Murphy, W.J. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu. Rev. Immunol. 2007, 25, 139–170. https://doi.org/10.1146/annurev.immunol.25.022106.141606.
  • 3.
    Fonseca-Santos, M.; Bailen, R.; Lopez-Godino, O.; et al. Characterization of Chronic Graft-versus-host Disease After Haploidentical Stem Cell Transplantation with Posttransplant Cyclophosphamide: A Study on behalf of GETH-TC. Transplantation 2024, 108, 2134–2143. https://doi.org/10.1097/TP.0000000000005034.
  • 4.
    Goerner, M.; Gooley, T.; Flowers, M.E.; et al. Morbidity and mortality of chronic GVHD after hematopoietic stem cell transplantation from HLA-identical siblings for patients with aplastic or refractory anemias. Biol. Blood Marrow Transplant. 2002, 8, 47–56. https://doi.org/10.1053/bbmt.2002.v8.pm11858190.
  • 5.
    Lum, S.H.; Eikema, D.J.; Piepenbroek, B.; et al. Outcomes of hematopoietic stem cell transplantation in 813 pediatric patients with Fanconi anemia. Blood 2024, 144, 1329–1342. https://doi.org/10.1182/blood.2023022751.
  • 6.
    Nagler, A.; Ngoya, M.; Galimard, J.E.; et al. Comparable relapse incidence after unrelated allogeneic stem cell transplantation with post-transplant cyclophosphamide versus conventional anti-graft versus host disease prophylaxis in patients with acute myeloid leukemia: A study on behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Am. J. Hematol. 2024, 99, 1732–1745. https://doi.org/10.1002/ajh.27383.
  • 7.
    Halahleh, K.A.; Ma’koseh, M.; Sultan, I.; et al. High Incidences of Acute and Chronic Graft-Versus-Host Disease after Hematopoietic Cell Transplants for Acute Myeloid Leukemia Using Thiotepa, Busulfan, and Fludarabine Pretransplant Conditioning. Acta Haematol. 2023, 146, 88–91. https://doi.org/10.1159/000528306.
  • 8.
    Satty, A.M.; Klein, E.; Mauguen, A.; et al. T-cell depleted allogeneic hematopoietic stem cell transplant for the treatment of Fanconi anemia and MDS/AML. Bone Marrow Transplant. 2024, 59, 23–33. https://doi.org/10.1038/s41409-023-02113-1.
  • 9.
    Wagner, J.E.; Thompson, J.S.; Carter, S.L.; et al. Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell Depletion Trial): A multi-centre, randomised phase II-III trial. Lancet 2005, 366, 733–741. https://doi.org/10.1016/S0140-6736(05)66996-6.
  • 10.
    Sakaguchi, S.; Sakaguchi, N.; Asano, M.; et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995, 155, 1151–1164.
  • 11.
    Bennett, C.L.; Christie, J.; Ramsdell, F.; et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 2001, 27, 20–21. https://doi.org/10.1038/83713.
  • 12.
    Zheng, Y.; Rudensky, A.Y. Foxp3 in control of the regulatory T cell lineage. Nat. Immunol. 2007, 8, 457–462. https://doi.org/10.1038/ni1455.
  • 13.
    Sakaguchi, S.; Sakaguchi, N.; Shimizu, J.; et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: Their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 2001, 182, 18–32. https://doi.org/10.1034/j.1600-065x.2001.1820102.x.
  • 14.
    Belkaid, Y.; Piccirillo, C.A.; Mendez, S.; et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002, 420, 502–507. https://doi.org/10.1038/nature01152.
  • 15.
    Kursar, M.; Bonhagen, K.; Fensterle, J.; et al. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses. J. Exp. Med. 2002, 196, 1585–1592. https://doi.org/10.1084/jem.20011347.
  • 16.
    Taylor, P.A.; Noelle, R.J.; Blazar, B.R. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J. Exp. Med. 2001, 193, 1311–1318. https://doi.org/10.1084/jem.193.11.1311.
  • 17.
    Nguyen, V.H.; Shashidhar, S.; Chang, D.S.; et al. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation. Blood 2008, 111, 945–953. https://doi.org/10.1182/blood-2007-07-103895.
  • 18.
    Edinger, M.; Hoffmann, P.; Ermann, J.; et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat. Med. 2003, 9, 1144–1150. https://doi.org/10.1038/nm915.
  • 19.
    Ermann, J.; Hoffmann, P.; Edinger, M.; et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 2005, 105, 2220–2226. https://doi.org/10.1182/blood-2004-05-2044.
  • 20.
    Taylor, P.A.; Lees, C.J.; Blazar, B.R. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002, 99, 3493–3499. https://doi.org/10.1182/blood.v99.10.3493.
  • 21.
    Cohen, J.L.; Trenado, A.; Vasey, D.; et al. CD4+CD25+ immunoregulatory T Cells: New therapeutics for graft-versus-host disease. J. Exp. Med. 2002, 196, 401–406. https://doi.org/10.1084/jem.20020090.
  • 22.
    Trenado, A.; Charlotte, F.; Fisson, S.; et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J. Clin. Investig. 2003, 112, 1688–1696. https://doi.org/10.1172/JCI17702.
  • 23.
    Brunstein, C.G.; Miller, J.S.; Cao, Q.; et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: Safety profile and detection kinetics. Blood 2011, 117, 1061–1070. https://doi.org/10.1182/blood-2010-07-293795.
  • 24.
    June, C.H.; Blazar, B.R. Clinical application of expanded CD4+25+ cells. Semin. Immunol. 2006, 18, 78–88. https://doi.org/10.1016/j.smim.2006.01.006.
  • 25.
    Li, L.; Godfrey, W.R.; Porter, S.B.; et al. CD4+CD25+ regulatory T-cell lines from human cord blood have functional and molecular properties of T-cell anergy. Blood 2005, 106, 3068–3073. https://doi.org/10.1182/blood-2005-04-1531.
  • 26.
    Beyer, M.; Schultze, J.L. Plasticity of T(reg) cells: Is reprogramming of T(reg) cells possible in the presence of FOXP3? Int. Immunopharmacol. 2011, 11, 555–560. https://doi.org/10.1016/j.intimp.2010.11.024.
  • 27.
    Battaglia, M.; Stabilini, A.; Migliavacca, B.; et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J. Immunol. 2006, 177, 8338–8347. https://doi.org/10.4049/jimmunol.177.12.8338.
  • 28.
    Putnam, A.L.; Brusko, T.M.; Lee, M.R.; et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 2009, 58, 652–662. https://doi.org/10.2337/db08-1168.
  • 29.
    Hippen, K.L.; Merkel, S.C.; Schirm, D.K.; et al. Massive ex vivo expansion of human natural regulatory T cells (T(regs)) with minimal loss of in vivo functional activity. Sci. Transl. Med. 2011, 3, 83ra41. https://doi.org/10.1126/scitranslmed.3001809.
  • 30.
    Feng, G.; Nadig, S.N.; Bäckdahl, L.; et al. Functional Regulatory T Cells Produced by Inhibiting Cyclic Nucleotide Phosphodiesterase Type 3 Prevent Allograft Rejection. Sci. Transl. Med. 2011, 3, 83ra40. https://doi.org/10.1126/scitranslmed.3002099.
  • 31.
    Kebriaei, P.; Singh, H.; Huls, M.H.; et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J. Clin. Investig. 2016, 126, 3363–3376. https://doi.org/10.1172/JCI86721.
  • 32.
    Singh, H.; Srour, S.A.; Milton, D.R.; et al. Sleeping beauty generated CD19 CAR T-Cell therapy for advanced B-Cell hematological malignancies. Front. Immunol. 2022, 13, 1032397. https://doi.org/10.3389/fimmu.2022.1032397.
  • 33.
    Srour, S.A.; Singh, H.; McCarty, J.; et al. Long-term outcomes of Sleeping Beauty-generated CD19-specific CAR T-cell therapy for relapsed-refractory B-cell lymphomas. Blood 2020, 135, 862–865. https://doi.org/10.1182/blood.2019002920.
  • 34.
    Beard, R.E.; Abate-Daga, D.; Rosati, S.F.; et al. Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy. Clin. Cancer Res. 2013, 19, 4941–4950. https://doi.org/10.1158/1078-0432.CCR-13-1253 From NLM Medline.
  • 35.
    Caruso, H.G.; Torikai, H.; Zhang, L.; et al. Redirecting T-Cell Specificity to EGFR Using mRNA to Self-limit Expression of Chimeric Antigen Receptor. J. Immunother. 2016, 39, 205–217.
Share this article:
How to Cite
Kumaresan, P.; Maiti, S.; Hauser, P. J.; Roszik, J.; Singh, H.; Dhamne, C. Isolation and Expansion of Clinical Grade T Regulatory Cells for GvHD Prophylaxis. International Journal of Clinical and Translational Medicine 2025, 1 (3), 4. https://doi.org/10.53941/ijctm.2025.1000018.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.