- 1.
Blazar, B.R.; Hill, G.R.; Murphy, W.J. Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat. Rev. Clin. Oncol. 2020, 17, 475–492. https://doi.org/10.1038/s41571-020-0356-4.
- 2.
Welniak, L.A.; Blazar, B.R.; Murphy, W.J. Immunobiology of allogeneic hematopoietic stem cell transplantation. Annu. Rev. Immunol. 2007, 25, 139–170. https://doi.org/10.1146/annurev.immunol.25.022106.141606.
- 3.
Fonseca-Santos, M.; Bailen, R.; Lopez-Godino, O.; et al. Characterization of Chronic Graft-versus-host Disease After Haploidentical Stem Cell Transplantation with Posttransplant Cyclophosphamide: A Study on behalf of GETH-TC. Transplantation 2024, 108, 2134–2143. https://doi.org/10.1097/TP.0000000000005034.
- 4.
Goerner, M.; Gooley, T.; Flowers, M.E.; et al. Morbidity and mortality of chronic GVHD after hematopoietic stem cell transplantation from HLA-identical siblings for patients with aplastic or refractory anemias. Biol. Blood Marrow Transplant. 2002, 8, 47–56. https://doi.org/10.1053/bbmt.2002.v8.pm11858190.
- 5.
Lum, S.H.; Eikema, D.J.; Piepenbroek, B.; et al. Outcomes of hematopoietic stem cell transplantation in 813 pediatric patients with Fanconi anemia. Blood 2024, 144, 1329–1342. https://doi.org/10.1182/blood.2023022751.
- 6.
Nagler, A.; Ngoya, M.; Galimard, J.E.; et al. Comparable relapse incidence after unrelated allogeneic stem cell transplantation with post-transplant cyclophosphamide versus conventional anti-graft versus host disease prophylaxis in patients with acute myeloid leukemia: A study on behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Am. J. Hematol. 2024, 99, 1732–1745. https://doi.org/10.1002/ajh.27383.
- 7.
Halahleh, K.A.; Ma’koseh, M.; Sultan, I.; et al. High Incidences of Acute and Chronic Graft-Versus-Host Disease after Hematopoietic Cell Transplants for Acute Myeloid Leukemia Using Thiotepa, Busulfan, and Fludarabine Pretransplant Conditioning. Acta Haematol. 2023, 146, 88–91. https://doi.org/10.1159/000528306.
- 8.
Satty, A.M.; Klein, E.; Mauguen, A.; et al. T-cell depleted allogeneic hematopoietic stem cell transplant for the treatment of Fanconi anemia and MDS/AML. Bone Marrow Transplant. 2024, 59, 23–33. https://doi.org/10.1038/s41409-023-02113-1.
- 9.
Wagner, J.E.; Thompson, J.S.; Carter, S.L.; et al. Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell Depletion Trial): A multi-centre, randomised phase II-III trial. Lancet 2005, 366, 733–741. https://doi.org/10.1016/S0140-6736(05)66996-6.
- 10.
Sakaguchi, S.; Sakaguchi, N.; Asano, M.; et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995, 155, 1151–1164.
- 11.
Bennett, C.L.; Christie, J.; Ramsdell, F.; et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 2001, 27, 20–21. https://doi.org/10.1038/83713.
- 12.
Zheng, Y.; Rudensky, A.Y. Foxp3 in control of the regulatory T cell lineage. Nat. Immunol. 2007, 8, 457–462. https://doi.org/10.1038/ni1455.
- 13.
Sakaguchi, S.; Sakaguchi, N.; Shimizu, J.; et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: Their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 2001, 182, 18–32. https://doi.org/10.1034/j.1600-065x.2001.1820102.x.
- 14.
Belkaid, Y.; Piccirillo, C.A.; Mendez, S.; et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002, 420, 502–507. https://doi.org/10.1038/nature01152.
- 15.
Kursar, M.; Bonhagen, K.; Fensterle, J.; et al. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses. J. Exp. Med. 2002, 196, 1585–1592. https://doi.org/10.1084/jem.20011347.
- 16.
Taylor, P.A.; Noelle, R.J.; Blazar, B.R. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J. Exp. Med. 2001, 193, 1311–1318. https://doi.org/10.1084/jem.193.11.1311.
- 17.
Nguyen, V.H.; Shashidhar, S.; Chang, D.S.; et al. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation. Blood 2008, 111, 945–953. https://doi.org/10.1182/blood-2007-07-103895.
- 18.
Edinger, M.; Hoffmann, P.; Ermann, J.; et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat. Med. 2003, 9, 1144–1150. https://doi.org/10.1038/nm915.
- 19.
Ermann, J.; Hoffmann, P.; Edinger, M.; et al. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 2005, 105, 2220–2226. https://doi.org/10.1182/blood-2004-05-2044.
- 20.
Taylor, P.A.; Lees, C.J.; Blazar, B.R. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002, 99, 3493–3499. https://doi.org/10.1182/blood.v99.10.3493.
- 21.
Cohen, J.L.; Trenado, A.; Vasey, D.; et al. CD4+CD25+ immunoregulatory T Cells: New therapeutics for graft-versus-host disease. J. Exp. Med. 2002, 196, 401–406. https://doi.org/10.1084/jem.20020090.
- 22.
Trenado, A.; Charlotte, F.; Fisson, S.; et al. Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J. Clin. Investig. 2003, 112, 1688–1696. https://doi.org/10.1172/JCI17702.
- 23.
Brunstein, C.G.; Miller, J.S.; Cao, Q.; et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: Safety profile and detection kinetics. Blood 2011, 117, 1061–1070. https://doi.org/10.1182/blood-2010-07-293795.
- 24.
June, C.H.; Blazar, B.R. Clinical application of expanded CD4+25+ cells. Semin. Immunol. 2006, 18, 78–88. https://doi.org/10.1016/j.smim.2006.01.006.
- 25.
Li, L.; Godfrey, W.R.; Porter, S.B.; et al. CD4+CD25+ regulatory T-cell lines from human cord blood have functional and molecular properties of T-cell anergy. Blood 2005, 106, 3068–3073. https://doi.org/10.1182/blood-2005-04-1531.
- 26.
Beyer, M.; Schultze, J.L. Plasticity of T(reg) cells: Is reprogramming of T(reg) cells possible in the presence of FOXP3? Int. Immunopharmacol. 2011, 11, 555–560. https://doi.org/10.1016/j.intimp.2010.11.024.
- 27.
Battaglia, M.; Stabilini, A.; Migliavacca, B.; et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J. Immunol. 2006, 177, 8338–8347. https://doi.org/10.4049/jimmunol.177.12.8338.
- 28.
Putnam, A.L.; Brusko, T.M.; Lee, M.R.; et al. Expansion of human regulatory T-cells from patients with type 1 diabetes. Diabetes 2009, 58, 652–662. https://doi.org/10.2337/db08-1168.
- 29.
Hippen, K.L.; Merkel, S.C.; Schirm, D.K.; et al. Massive ex vivo expansion of human natural regulatory T cells (T(regs)) with minimal loss of in vivo functional activity. Sci. Transl. Med. 2011, 3, 83ra41. https://doi.org/10.1126/scitranslmed.3001809.
- 30.
Feng, G.; Nadig, S.N.; Bäckdahl, L.; et al. Functional Regulatory T Cells Produced by Inhibiting Cyclic Nucleotide Phosphodiesterase Type 3 Prevent Allograft Rejection. Sci. Transl. Med. 2011, 3, 83ra40. https://doi.org/10.1126/scitranslmed.3002099.
- 31.
Kebriaei, P.; Singh, H.; Huls, M.H.; et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J. Clin. Investig. 2016, 126, 3363–3376. https://doi.org/10.1172/JCI86721.
- 32.
Singh, H.; Srour, S.A.; Milton, D.R.; et al. Sleeping beauty generated CD19 CAR T-Cell therapy for advanced B-Cell hematological malignancies. Front. Immunol. 2022, 13, 1032397. https://doi.org/10.3389/fimmu.2022.1032397.
- 33.
Srour, S.A.; Singh, H.; McCarty, J.; et al. Long-term outcomes of Sleeping Beauty-generated CD19-specific CAR T-cell therapy for relapsed-refractory B-cell lymphomas. Blood 2020, 135, 862–865. https://doi.org/10.1182/blood.2019002920.
- 34.
Beard, R.E.; Abate-Daga, D.; Rosati, S.F.; et al. Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy. Clin. Cancer Res. 2013, 19, 4941–4950. https://doi.org/10.1158/1078-0432.CCR-13-1253 From NLM Medline.
- 35.
Caruso, H.G.; Torikai, H.; Zhang, L.; et al. Redirecting T-Cell Specificity to EGFR Using mRNA to Self-limit Expression of Chimeric Antigen Receptor. J. Immunother. 2016, 39, 205–217.