- 1.
Trefts, E.; Gannon, M.; Wasserman, D.H. The Liver. Curr. Biol. 2017, 27, R1147–R1151. https://doi.org/10.1016/j.cub.2017.09.019.
- 2.
Kalra, A.; Yetiskul, E.; Wehrle, C.J.; et al. Physiology, Liver. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025.
- 3.
Hardy, T.; Oakley, F.; Anstee, Q.M.; et al. Nonalcoholic Fatty Liver Disease: Pathogenesis and Disease Spectrum. Annu. Rev. Pathol. 2016, 11, 451–496. https://doi.org/10.1146/annurev-pathol-012615-044224.
- 4.
Sabini, J.H.; Timotius, K.H. Hepatoprotective and Fat-Accumulation-Reductive Effects of Curcumin on Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Curr. Issues Mol. Biol. 2025, 47, 159. https://doi.org/10.3390/cimb47030159.
- 5.
Vitale, I.; Pietrocola, F.; Guilbaud, E.; et al. Apoptotic Cell Death in Disease—Current Understanding of the NCCD 2023. Cell Death Differ. 2023, 30, 1097–1154. https://doi.org/10.1038/s41418-023-01153-w.
- 6.
de Almeida, I.T.; Cortez-Pinto, H.; Fidalgo, G.; et al. Plasma Total and Free Fatty Acids Composition in Human Non-Alcoholic Steatohepatitis. Clin. Nutr. 2002, 21, 219–223. https://doi.org/10.1054/clnu.2001.0529.
- 7.
Ogawa, Y.; Imajo, K.; Honda, Y.; et al. Palmitate-Induced Lipotoxicity Is Crucial for the Pathogenesis of Nonalcoholic Fatty Liver Disease in Cooperation with Gut-Derived Endotoxin. Sci. Rep. 2018, 8, 11365. https://doi.org/10.1038/s41598-018-29735-6.
- 8.
Cazanave, S.C.; Mott, J.L.; Elmi, N.A.; et al. JNK1-Dependent PUMA Expression Contributes to Hepatocyte Lipoapoptosis. J. Biol. Chem. 2009, 284, 26591–26602. https://doi.org/10.1074/jbc.M109.022491.
- 9.
Yang, X.; Gonzalez, F.J.; Huang, M.; et al. Nuclear Receptors and Non-Alcoholic Fatty Liver Disease: An Update. Liver Res. 2020, 4, 88–93. https://doi.org/10.1016/j.livres.2020.03.001.
- 10.
Chai, C.; Cox, B.; Yaish, D.; et al. Agonist of RORA Attenuates Nonalcoholic Fatty Liver Progression in Mice via Up-Regulation of MicroRNA 122. Gastroenterology 2020, 159, 999–1014.e9. https://doi.org/10.1053/j.gastro.2020.05.056.
- 11.
Han, Y.-H.; Kim, H.-J.; Lee, M.-O. RORα Regulates Hepatic Lipolysis by Inducing Transcriptional Expression of PNPLA3 in Mice. Mol. Cell. Endocrinol. 2021, 522, 111122. https://doi.org/10.1016/j.mce.2020.111122.
- 12.
Han, Y.-H.; Kim, H.-J.; Na, H.; et al. RORα Induces KLF4-Mediated M2 Polarization in the Liver Macrophages That Protect against Nonalcoholic Steatohepatitis. Cell Rep. 2017, 20, 124–135. https://doi.org/10.1016/j.celrep.2017.06.017.
- 13.
Han, Y.-H.; Kim, H.-J.; Kim, E.-J.; et al. RORα Decreases Oxidative Stress through the Induction of SOD2 and GPx1 Expression and Thereby Protects against Nonalcoholic Steatohepatitis in Mice. Antioxid. Redox Signal. 2014, 21, 2083–2094. https://doi.org/10.1089/ars.2013.5655.
- 14.
Wang, D.; Wang, W.; Song, M.; et al. Regulation of Protein Phosphorylation by PTPN2 and Its Small-Molecule Inhibitors/Degraders as a Potential Disease Treatment Strategy. Eur. J. Med. Chem. 2024, 277, 116774. https://doi.org/10.1016/j.ejmech.2024.116774.
- 15.
Grohmann, M.; Wiede, F.; Dodd, G.T.; et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell 2018, 175, 1289–1306.e20. https://doi.org/10.1016/j.cell.2018.09.053.
- 16.
Matsumoto, M.; Hada, N.; Sakamaki, Y.; et al. An Improved Mouse Model That Rapidly Develops Fibrosis in Non-Alcoholic Steatohepatitis. Int. J. Exp. Pathol. 2013, 94, 93–103. https://doi.org/10.1111/iep.12008.
- 17.
Gearing, L.J.; Cumming, H.E.; Chapman, R.; et al. CiiiDER: A Tool for Predicting and Analysing Transcription Factor Binding Sites. PLoS ONE 2019, 14, e0215495. https://doi.org/10.1371/journal.pone.0215495.
- 18.
Byun, J.-K.; Choi, Y.-K.; Kang, Y.N.; et al. Retinoic Acid-Related Orphan Receptor Alpha Reprograms Glucose Metabolism in Glutamine-Deficient Hepatoma Cells. Hepatology 2015, 61, 953–964. https://doi.org/10.1002/hep.27577.
- 19.
Kim, E.-J.; Yoon, Y.-S.; Hong, S.; et al. Retinoic Acid Receptor-Related Orphan Receptor α-Induced Activation of Adenosine Monophosphate-Activated Protein Kinase Results in Attenuation of Hepatic Steatosis. Hepatology 2012, 55, 1379–1388. https://doi.org/10.1002/hep.25529.
- 20.
Rinella, M.E.; Sookoian, S. From NAFLD to MASLD: Updated Naming and Diagnosis Criteria for Fatty Liver Disease. J. Lipid Res. 2023, 65, 100485. https://doi.org/10.1016/j.jlr.2023.100485.
- 21.
de Alwis, N.M.W.; Day, C.P. Non-Alcoholic Fatty Liver Disease: The Mist Gradually Clears. J. Hepatol. 2008, 48, S104–S112. https://doi.org/10.1016/j.jhep.2008.01.009.
- 22.
Boonkaew, B.; Satthawiwat, N.; Pachane, B.C.; et al. Palmitic Acid Reduces LDLR-Dependent Uptake of Macrophage-Derived Extracellular Vesicles by Hepatoma Cells. Non-Coding RNA Res. 2025, 13, 71–83. https://doi.org/10.1016/j.ncrna.2025.04.007.
- 23.
Yadav, A.K.; Sata, T.N.; Verma, D.; et al. Free Fatty Acid-Induced miR-181a-5p Stimulates Apoptosis by Targeting XIAP and Bcl2 in Hepatic Cells. Life Sci. 2022, 301, 120625. https://doi.org/10.1016/j.lfs.2022.120625.
- 24.
Tang, C.; Feng, W.; Bao, Y.; et al. Long Non-Coding RNA TINCR Promotes Hepatocellular Carcinoma Proliferation and Invasion via STAT3 Signaling by Direct Interacting with T-Cell Protein Tyrosine Phosphatase (TCPTP). Bioengineered 2021, 12, 2119–2131. https://doi.org/10.1080/21655979.2021.1930336.
- 25.
Moore, F.; Colli, M.L.; Cnop, M.; et al. PTPN2, a Candidate Gene for Type 1 Diabetes, Modulates Interferon-γ–Induced Pancreatic β-Cell Apoptosis. Diabetes 2009, 58, 1283–1291. https://doi.org/10.2337/db08-1510.
- 26.
Laudet, V.; Hänni, C.; Coll, J.; et al. Evolution of the Nuclear Receptor Gene Superfamily. EMBO J. 1992, 11, 1003–1013.
- 27.
Lin, S.-J.; Yang, D.-R.; Yang, G.; et al. Chapter Thirteen—TR2 and TR4 Orphan Nuclear Receptors: An Overview. In Current Topics in Developmental Biology; Forrest, D., Tsai, S., Eds.; Nuclear Receptors in Development and Disease; Academic Press: Cambridge, MA, USA, 2017; Volume 125, pp. 357–373.
- 28.
Giguère, V.; McBroom, L.D.; Flock, G. Determinants of Target Gene Specificity for ROR Alpha 1: Monomeric DNA Binding by an Orphan Nuclear Receptor. Mol. Cell. Biol. 1995, 15, 2517–2526. https://doi.org/10.1128/MCB.15.5.2517.