2508001045
  • Open Access
  • Mini-Review

Monoclonal Gammopathy of Undetermined Significance: A Perspective from Laboratorians

  • Ishwarlal Jialal 1, *,   
  • Perumal Thiagarajan 2

Received: 02 Jul 2025 | Accepted: 11 Jul 2025 | Published: 09 Oct 2025

Abstract

Monoclonal Gammopathy of Undetermined Significance (MGUS) is defined as the presence of a monoclonal protein (M-protein) detected by electrophoresis in serum or urine or an abnormal free light chain ratio (FLCR). The concentration of M protein is <3.0 g/dl, with <10 percent plasma cells on bone marrow biopsy (if performed). Moreover, patients lack CRAB-related clinical features such as hyperCalcemia, Renal dysfunction, Anemia and lytic Bone lesions. MGUS is present in over 3% of persons > 50 years of age. Most MGUS are of the IgG subtype. For non-IgM –MGUS (IgG, IgA, IgD, IgE), the risk of progression to multiple myeloma, amyloidosis or a related disorder is 1.0 percent per year. For IgM-MGUS the risk of progression to Waldenstrom’s macroglobulinemia or IgM myeloma is 1.5 percent per year. For light chain MGUS the risk of progression to light chain myeloma or amyloidosis is 0.3% per year. The Mayo Clinic criteria for greatest progression over 20 years include a M-protein level ≥ 1.5 g/dl, non-IgG M-protein and an increase in the FLCR. In any patient with an M protein and unexplained end organ dysfunction, it is imperative to rule out Monoclonal Gammopathy of Clinical Significance manifesting as renal disease, neuropathy etc.    since potential treatments could be offered. Most importantly, studies have suggested that MGUS screening should be actively discouraged. Finally, much further research is needed to identify biomarkers that will more accurately predict progression to malignancies in patients with MGUS.

References 

  • 1.
    Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. https://doi.org/10.1016/S1470-2045(14)70442-5.
  • 2.
    Liu, Y.; Parks, A.L. Diagnosis and Management of Monoclonal Gammopathy of Undetermined Significance: A Review. JAMA Intern. Med. 2025, 185, 450–456. https://doi.org/10.1001/jamainternmed.2024.8124.
  • 3.
    Gonsalves, W.I.; Rajkumar, S.V. Monoclonal Gammopathy of Undetermined Significance. Ann. Intern. Med. 2022, 175, ITC177–ITC192. https://doi.org/10.7326/AITC202212200; Erratum in Ann. Intern. Med. 2023, 176, 288. https://doi.org/10.7326/L22-0509.
  • 4.
    Willrich, M.A.; Katzmann, J.A. Laboratory testing requirements for diagnosis and follow-up of multiple myeloma and related plasma cell dyscrasias. Clin. Chem. Lab. Med. 2016, 54, 907–919. https://doi.org/10.1515/cclm-2015-0580.
  • 5.
    Landgren, O.; Graubard, B.I.; Katzmann, J.A.; et al. Racial disparities in the prevalence of monoclonal gammopathies: A population-based study of 12,482 persons from the National Health and Nutritional Examination Survey. Leukemia 2014, 28, 1537–1542. https://doi.org/10.1038/leu.2014.34.
  • 6.
    Landgren, O.; Kristinsson, S.Y.; Goldin, L.R.; et al. Risk of plasma cell and lymphoproliferative disorders among 14621 first-degree relatives of 4458 patients with monoclonal gammopathy of undetermined significance in Sweden. Blood 2009, 114, 791–795. https://doi.org/10.1182/blood-2008-12-191676.
  • 7.
    Hofmann, J.N.; Beane Freeman, L.E.; Murata, K.; et al. Lifetime Pesticide Use and Monoclonal Gammopathy of Undetermined Significance in a Prospective Cohort of Male Farmers. Environ. Health Perspect. 2021, 129, 17003. https://doi.org/10.1289/EHP6960.
  • 8.
    Liu, L.W.; Wang, M.; Grandhi, N.; et al. The Association of Agent Orange Exposure with the progression of monoclonal gammopathy of undetermined significance to multiple myeloma: A population-based study of Vietnam War Era Veterans. J. Hematol. Oncol. 2024, 17, 3. https://doi.org/10.1186/s13045-023-01521-6.
  • 9.
    Rögnvaldsson, S.; Thorsteinsdóttir, S.; Kristinsson, S.Y. Screening in Multiple Myeloma and Its Precursors: Are We There Yet? Clin. Chem. 2024, 70, 128–139. https://doi.org/10.1093/clinchem/hvad148.
  • 10.
    Kyle, R.A.; Larson, D.R.; Therneau, T.M.; et al. Long-Term Follow-up of Monoclonal Gammopathy of Undetermined Significance. N. Engl. J. Med. 2018, 378, 241–249. https://doi.org/10.1056/NEJMoa1709974.
  • 11.
    Landgren, O.; Hofmann, J.N.; McShane, C.M.; et al. Association of Immune Marker Changes with Progression of Monoclonal Gammopathy of Undetermined Significance to Multiple Myeloma. JAMA Oncol. 2019, 5, 1293–1301. https://doi.org/10.1001/jamaoncol.2019.1568.
  • 12.
    Cowan, A.; Ferrari, F.; Freeman, S.S.; et al. Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): A retrospective, multicohort study. Lancet Haematol. 2023, 10, e203–e212. https://doi.org/10.1016/S2352-3026(22)00386-6; Erratum in Lancet Haematol. 2024, 11, e181. https://doi.org/10.1016/S2352-3026(24)00040-1.
  • 13.
    Dhodapkar, M.V. MGUS to myeloma: A mysterious gammopathy of underexplored significance. Blood 2016, 128, 2599–2606. https://doi.org/10.1182/blood-2016-09-692954.
  • 14.
    Trojani, A.; Di Camillo, B.; Bossi, L.E.; et al. Identification of a Candidate Gene Set Signature for the Risk of Progression in IgM MGUS to Smoldering/Symptomatic Waldenström Macroglobulinemia (WM) by a Comparative Transcriptome Analysis of B Cells and Plasma Cells. Cancers 2021, 13, 1837. https://doi.org/10.3390/cancers13081837.
  • 15.
    García-Sanz, R.; Jiménez, C.; Puig, N.; et al. Origin of Waldenstrom’s macroglobulinaemia. Best Pract. Res. Clin. Haematol. 2016, 29, 136–147. https://doi.org/10.1016/j.beha.2016.08.024.
  • 16.
    Jacobs, J.F.M.; Turner, K.A.; Graziani, M.S.; et al. An international multi-center serum protein electrophoresis accuracy and M-protein isotyping study. Part II: Limit of detection and follow-up of patients with small M-proteins. Clin. Chem. Lab. Med. 2020, 58, 547–559. https://doi.org/10.1515/cclm-2019-1105.
  • 17.
    Cho, H.; Jung, J.; Chae, H.; et al. Assessment of M-protein quantification using capillary electrophoresis and immunosubtraction-based integration in clinical samples with low M-protein concentrations. Clin. Biochem. 2022, 107, 7–12. https://doi.org/10.1016/j.clinbiochem.2022.05.011.
  • 18.
    Booth, R.A.; McCudden, C.R.; Balion, C.M.; et al. Candidate recommendations for protein electrophoresis reporting from the Canadian Society of Clinical Chemists Monoclonal Gammopathy Working Group. Clin. Biochem. 2018, 51, 10–20. https://doi.org/10.1016/j.clinbiochem.2017.10.013.
  • 19.
    Keren, D.F.; Bocsi, G.; Billman, B.L.; et al. Laboratory Detection and Initial Diagnosis of Monoclonal Gammopathies. Arch. Pathol. Lab. Med. 2022, 146, 575–590. https://doi.org/10.5858/arpa.2020-0794-CP.
  • 20.
    Dispenzieri, A.; Kyle, R.; Merlini, G.; et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009, 23, 215–224. https://doi.org/10.1038/leu.2008.307.
  • 21.
    Long, T.E.; Indridason, O.S.; Palsson, R.; et al. Defining new reference intervals for serum free light chains in individuals with chronic kidney disease: Results of the iStopMM study. Blood Cancer J. 2022, 12, 133. https://doi.org/10.1038/s41408-022-00732-3.
  • 22.
    Schieferdecker, A.; Hörber, S.; Ums, M.; et al. Comparison of three different serum-free light-chain assays-implications on diagnostic and therapeutic monitoring of multiple myeloma. Blood Cancer J. 2020, 10, 2. https://doi.org/10.1038/s41408-019-0267-8.
  • 23.
    Willrich, M.A.V.; Murray, D.L.; Kyle, R.A. Laboratory testing for monoclonal gammopathies: Focus on monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Clin. Biochem. 2018, 51, 38–47. https://doi.org/10.1016/j.clinbiochem.2017.05.001.
  • 24.
    Moore, L.M.; Cho, S.; Thoren, K.L. MALDI-TOF mass spectrometry distinguishes daratumumab from M-proteins. Clin. Chim. Acta 2019, 492, 91–94. https://doi.org/10.1016/j.cca.2019.02.017.
  • 25.
    Tzasta, A.; Wijnands, C.; Baalman, K.; et al. Advances in multiple myeloma blood-based monitoring and its clinical applications. Crit. Rev. Clin. Lab Sci. 2025, 1–19. https://doi.org/10.1080/10408363.2025.2512466.
  • 26.
    Rosenberg, A.S.; Bainbridge, S.; Pahwa, R.; et al. Investigation into the interference of the monoclonal antibody daratumumab on the free light chain assay. Clin. Biochem. 2016, 49, 1202–1204. https://doi.org/10.1016/j.clinbiochem.2016.07.016.
  • 27.
    Keshgegian, A.A. Anion gap and immunoglobulin concentration. Am. J. Clin. Pathol. 1980, 74, 282–284. https://doi.org/10.1093/ajcp/74.3.282.
  • 28.
    Yasin, Z.; Quick, D.; Thiagarajan, P.; et al. Light-chain paraproteins with lupus anticoagulant activity. Am. J. Hematol. 1999, 62, 99–102. https://doi.org/10.1002/(sici)1096-8652(199910)62:2<99::aid-ajh6>3.0.co;2-n.
  • 29.
    Abou-Ismail, M.Y.; Rodgers, G.M.; Bray, P.F.; et al. Acquired von Willebrand syndrome in monoclonal gammopathy—A scoping review on hemostatic management. Res. Pract. Thromb. Haemost. 2021, 5, 356–365. https://doi.org/10.1002/rth2.12481.
  • 30.
    Iberri, D.; Liedtke, M. MGCS: Where do we stand today? Hematol. Am. Soc. Hematol. Educ. Program 2024, 2024, 482–488. https://doi.org/10.1182/hematology.2024000572.
  • 31.
    Cho, H. Diagnosis and management of monoclonal gammopathy of clinical significance. Blood Res. 2022, 57, 20–26. https://doi.org/10.5045/br.2022.2022035.
  • 32.
    Oganesyan, A.; Gregory, A.; Malard, F.; et al. Monoclonal gammopathies of clinical significance (MGCS): In pursuit of optimal treatment. Front. Immunol. 2022, 13, 1045002. https://doi.org/10.3389/fimmu.2022.1045002.
  • 33.
    Leung, N.; Bridoux, F.; Nasr, S.H. Monoclonal Gammopathy of Renal Significance. N. Engl. J. Med. 2021, 384, 1931–1941. https://doi.org/10.1056/NEJMra1810907.
Share this article:
How to Cite
Jialal, I.; Thiagarajan, P. Monoclonal Gammopathy of Undetermined Significance: A Perspective from Laboratorians. International Journal of Clinical and Translational Medicine 2025, 1 (4), 3. https://doi.org/10.53941/ijctm.2025.1000024.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.