- 1.
Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. https://doi.org/10.1016/S1470-2045(14)70442-5.
- 2.
Liu, Y.; Parks, A.L. Diagnosis and Management of Monoclonal Gammopathy of Undetermined Significance: A Review. JAMA Intern. Med. 2025, 185, 450–456. https://doi.org/10.1001/jamainternmed.2024.8124.
- 3.
Gonsalves, W.I.; Rajkumar, S.V. Monoclonal Gammopathy of Undetermined Significance. Ann. Intern. Med. 2022, 175, ITC177–ITC192. https://doi.org/10.7326/AITC202212200; Erratum in Ann. Intern. Med. 2023, 176, 288. https://doi.org/10.7326/L22-0509.
- 4.
Willrich, M.A.; Katzmann, J.A. Laboratory testing requirements for diagnosis and follow-up of multiple myeloma and related plasma cell dyscrasias. Clin. Chem. Lab. Med. 2016, 54, 907–919. https://doi.org/10.1515/cclm-2015-0580.
- 5.
Landgren, O.; Graubard, B.I.; Katzmann, J.A.; et al. Racial disparities in the prevalence of monoclonal gammopathies: A population-based study of 12,482 persons from the National Health and Nutritional Examination Survey. Leukemia 2014, 28, 1537–1542. https://doi.org/10.1038/leu.2014.34.
- 6.
Landgren, O.; Kristinsson, S.Y.; Goldin, L.R.; et al. Risk of plasma cell and lymphoproliferative disorders among 14621 first-degree relatives of 4458 patients with monoclonal gammopathy of undetermined significance in Sweden. Blood 2009, 114, 791–795. https://doi.org/10.1182/blood-2008-12-191676.
- 7.
Hofmann, J.N.; Beane Freeman, L.E.; Murata, K.; et al. Lifetime Pesticide Use and Monoclonal Gammopathy of Undetermined Significance in a Prospective Cohort of Male Farmers. Environ. Health Perspect. 2021, 129, 17003. https://doi.org/10.1289/EHP6960.
- 8.
Liu, L.W.; Wang, M.; Grandhi, N.; et al. The Association of Agent Orange Exposure with the progression of monoclonal gammopathy of undetermined significance to multiple myeloma: A population-based study of Vietnam War Era Veterans. J. Hematol. Oncol. 2024, 17, 3. https://doi.org/10.1186/s13045-023-01521-6.
- 9.
Rögnvaldsson, S.; Thorsteinsdóttir, S.; Kristinsson, S.Y. Screening in Multiple Myeloma and Its Precursors: Are We There Yet? Clin. Chem. 2024, 70, 128–139. https://doi.org/10.1093/clinchem/hvad148.
- 10.
Kyle, R.A.; Larson, D.R.; Therneau, T.M.; et al. Long-Term Follow-up of Monoclonal Gammopathy of Undetermined Significance. N. Engl. J. Med. 2018, 378, 241–249. https://doi.org/10.1056/NEJMoa1709974.
- 11.
Landgren, O.; Hofmann, J.N.; McShane, C.M.; et al. Association of Immune Marker Changes with Progression of Monoclonal Gammopathy of Undetermined Significance to Multiple Myeloma. JAMA Oncol. 2019, 5, 1293–1301. https://doi.org/10.1001/jamaoncol.2019.1568.
- 12.
Cowan, A.; Ferrari, F.; Freeman, S.S.; et al. Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): A retrospective, multicohort study. Lancet Haematol. 2023, 10, e203–e212. https://doi.org/10.1016/S2352-3026(22)00386-6; Erratum in Lancet Haematol. 2024, 11, e181. https://doi.org/10.1016/S2352-3026(24)00040-1.
- 13.
Dhodapkar, M.V. MGUS to myeloma: A mysterious gammopathy of underexplored significance. Blood 2016, 128, 2599–2606. https://doi.org/10.1182/blood-2016-09-692954.
- 14.
Trojani, A.; Di Camillo, B.; Bossi, L.E.; et al. Identification of a Candidate Gene Set Signature for the Risk of Progression in IgM MGUS to Smoldering/Symptomatic Waldenström Macroglobulinemia (WM) by a Comparative Transcriptome Analysis of B Cells and Plasma Cells. Cancers 2021, 13, 1837. https://doi.org/10.3390/cancers13081837.
- 15.
García-Sanz, R.; Jiménez, C.; Puig, N.; et al. Origin of Waldenstrom’s macroglobulinaemia. Best Pract. Res. Clin. Haematol. 2016, 29, 136–147. https://doi.org/10.1016/j.beha.2016.08.024.
- 16.
Jacobs, J.F.M.; Turner, K.A.; Graziani, M.S.; et al. An international multi-center serum protein electrophoresis accuracy and M-protein isotyping study. Part II: Limit of detection and follow-up of patients with small M-proteins. Clin. Chem. Lab. Med. 2020, 58, 547–559. https://doi.org/10.1515/cclm-2019-1105.
- 17.
Cho, H.; Jung, J.; Chae, H.; et al. Assessment of M-protein quantification using capillary electrophoresis and immunosubtraction-based integration in clinical samples with low M-protein concentrations. Clin. Biochem. 2022, 107, 7–12. https://doi.org/10.1016/j.clinbiochem.2022.05.011.
- 18.
Booth, R.A.; McCudden, C.R.; Balion, C.M.; et al. Candidate recommendations for protein electrophoresis reporting from the Canadian Society of Clinical Chemists Monoclonal Gammopathy Working Group. Clin. Biochem. 2018, 51, 10–20. https://doi.org/10.1016/j.clinbiochem.2017.10.013.
- 19.
Keren, D.F.; Bocsi, G.; Billman, B.L.; et al. Laboratory Detection and Initial Diagnosis of Monoclonal Gammopathies. Arch. Pathol. Lab. Med. 2022, 146, 575–590. https://doi.org/10.5858/arpa.2020-0794-CP.
- 20.
Dispenzieri, A.; Kyle, R.; Merlini, G.; et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009, 23, 215–224. https://doi.org/10.1038/leu.2008.307.
- 21.
Long, T.E.; Indridason, O.S.; Palsson, R.; et al. Defining new reference intervals for serum free light chains in individuals with chronic kidney disease: Results of the iStopMM study. Blood Cancer J. 2022, 12, 133. https://doi.org/10.1038/s41408-022-00732-3.
- 22.
Schieferdecker, A.; Hörber, S.; Ums, M.; et al. Comparison of three different serum-free light-chain assays-implications on diagnostic and therapeutic monitoring of multiple myeloma. Blood Cancer J. 2020, 10, 2. https://doi.org/10.1038/s41408-019-0267-8.
- 23.
Willrich, M.A.V.; Murray, D.L.; Kyle, R.A. Laboratory testing for monoclonal gammopathies: Focus on monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Clin. Biochem. 2018, 51, 38–47. https://doi.org/10.1016/j.clinbiochem.2017.05.001.
- 24.
Moore, L.M.; Cho, S.; Thoren, K.L. MALDI-TOF mass spectrometry distinguishes daratumumab from M-proteins. Clin. Chim. Acta 2019, 492, 91–94. https://doi.org/10.1016/j.cca.2019.02.017.
- 25.
Tzasta, A.; Wijnands, C.; Baalman, K.; et al. Advances in multiple myeloma blood-based monitoring and its clinical applications. Crit. Rev. Clin. Lab Sci. 2025, 1–19. https://doi.org/10.1080/10408363.2025.2512466.
- 26.
Rosenberg, A.S.; Bainbridge, S.; Pahwa, R.; et al. Investigation into the interference of the monoclonal antibody daratumumab on the free light chain assay. Clin. Biochem. 2016, 49, 1202–1204. https://doi.org/10.1016/j.clinbiochem.2016.07.016.
- 27.
Keshgegian, A.A. Anion gap and immunoglobulin concentration. Am. J. Clin. Pathol. 1980, 74, 282–284. https://doi.org/10.1093/ajcp/74.3.282.
- 28.
Yasin, Z.; Quick, D.; Thiagarajan, P.; et al. Light-chain paraproteins with lupus anticoagulant activity. Am. J. Hematol. 1999, 62, 99–102. https://doi.org/10.1002/(sici)1096-8652(199910)62:2<99::aid-ajh6>3.0.co;2-n.
- 29.
Abou-Ismail, M.Y.; Rodgers, G.M.; Bray, P.F.; et al. Acquired von Willebrand syndrome in monoclonal gammopathy—A scoping review on hemostatic management. Res. Pract. Thromb. Haemost. 2021, 5, 356–365. https://doi.org/10.1002/rth2.12481.
- 30.
Iberri, D.; Liedtke, M. MGCS: Where do we stand today? Hematol. Am. Soc. Hematol. Educ. Program 2024, 2024, 482–488. https://doi.org/10.1182/hematology.2024000572.
- 31.
Cho, H. Diagnosis and management of monoclonal gammopathy of clinical significance. Blood Res. 2022, 57, 20–26. https://doi.org/10.5045/br.2022.2022035.
- 32.
Oganesyan, A.; Gregory, A.; Malard, F.; et al. Monoclonal gammopathies of clinical significance (MGCS): In pursuit of optimal treatment. Front. Immunol. 2022, 13, 1045002. https://doi.org/10.3389/fimmu.2022.1045002.
- 33.
Leung, N.; Bridoux, F.; Nasr, S.H. Monoclonal Gammopathy of Renal Significance. N. Engl. J. Med. 2021, 384, 1931–1941. https://doi.org/10.1056/NEJMra1810907.