- 1.
Reaven, G.M. Role of insulin resistance in human disease (syndrome X): An expanded definition. Annu. Rev. Med. 1993, 44, 121–131.
- 2.
DeFronzo, R.A. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: The missing links. The Claude Bernard Lecture 2009. Diabetologia 2010, 53, 1270–1287. https://doi.org/10.1007/s00125-010-1684-1.
- 3.
Ormazabal, V.; Nair, S.; Elfeky, O.; et al. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. https://doi.org/10.1186/s12933-018-0762-4.
- 4.
Caturano, A.; Vetrano, E.; Galiero, R.; et al. Advances in the Insulin-Heart Axis: Current Therapies and Future Directions. Int. J. Mol. Sci. 2024, 25, 10173. https://doi.org/10.3390/ijms251810173.
- 5.
Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. https://doi.org/10.2337/diacare.27.6.1487.
- 6.
Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. https://doi.org/10.1210/jc.2010-0288.
- 7.
Gounden, V.; Devaraj, S.; Jialal, I. The role of the triglyceride-glucose index as a biomarker of cardio-metabolic syndromes. Lipids Health Dis. 2024, 23, 416. https://doi.org/10.1186/s12944-024-02412-6.
- 8.
Williams, K.V.; Erbey, J.R.; Becker, D.; et al. Can clinical factors estimate insulin resistance in type 1 diabetes? Diabetes 2000, 49, 626–632. https://doi.org/10.2337/diabetes.49.4.626.
- 9.
Zabala, A.; Darsalia, V.; Lind, M.; et al. Estimated glucose disposal rate and risk of stroke and mortality in type 2 diabetes: A nationwide cohort study. Cardiovasc. Diabetol. 2021, 20, 202. https://doi.org/10.1186/s12933-021-01394-4.
- 10.
Epstein, E.J.; Osman, J.L.; Cohen, H.W.; et al. Use of the Estimated glucose disposal rate as a measure of insulin resistance in an urban multiethnic population with type 1 diabetes. Diabetes Care 2013, 36, 2280–2285. https://doi.org/10.2337/dc12-1693.
- 11.
Chillarón, J.J.; Goday, A.; Flores-Le-Roux, J.A.; et al. Estimated glucose disposal rate in assessment of the metabolic syndrome and microvascular complications in patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 2009, 94, 3530–3534. https://doi.org/10.1210/jc.2009-0960.
- 12.
Bahrami Hezaveh, E.; Hashemi, R.; Noorafrooz, M.; et al. Estimated Glucose Disposal Rate: A Potential Determinant for Microvascular and Macrovascular Complications in Type 2 Diabetes. Endocrinol. Diabetes Metab. 2025, 8, e70037. https://doi.org/10.1002/edm2.70037.
- 13.
Nyström, T.; Holzmann, M.J.; Eliasson, B.; et al. Estimated glucose disposal rate and long-term survival in type 2 diabetes after coronary artery bypass grafting. Heart Vessel. 2017, 32, 269–278. https://doi.org/10.1007/s00380-016-0875-1.
- 14.
Guo, L.; Zhang, J.; An, R.; et al. The role of estimated glucose disposal rate in predicting cardiovascular risk among general and diabetes mellitus population: A systematic review and meta-analysis. BMC Med. 2025, 23, 234. https://doi.org/10.1186/s12916-025-04064-4.
- 15.
Tao, S.; Yu, L.; Li, J.; et al. Insulin resistance quantified by estimated glucose disposal rate predicts cardiovascular disease incidence: A nationwide prospective cohort study. Cardiovasc. Diabetol. 2025, 24, 161. https://doi.org/10.1186/s12933-025-02672-1.
- 16.
Chen, X.; Li, A.; Ma, Q. Association of estimated glucose disposal rate with metabolic syndrome prevalence and mortality risks: A population-based study. Cardiovasc. Diabetol. 2025, 24, 38. https://doi.org/10.1186/s12933-025-02599-7.
- 17.
Bremer, A.A.; Devaraj, S.; Afify, A.; et al. Adipose tissue dysregulation in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E1782–E1788.
- 18.
Jialal, I.; Huet, B.A.; Kaur, H.; et al. Increased toll-like receptor activity in patients with metabolic syndrome. Diabetes Care 2012, 35, 900–904.
- 19.
Jialal, I.; Devaraj, S.; Adams-Huet, B.; et al. Increased cellular and circulating biomarkers of oxidative stress in nascent metabolic syndrome. J. Clin. Endocrinol. Metab. 2012, 97, E1844–E1850.
- 20.
Jialal, I.; Devaraj, S.; Kaur, H.; et al. Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome. J. Clin. Endocrinol. Metab. 2013, 98, E514–E517.
- 21.
Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752.
- 22.
Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute: American Heart Association: World Heart Federation; International Atherosclerosis Society; and International Association for the study of Obesity. Circulation 2009, 120, 1640–1645.
- 23.
Jialal, I.; Adams-Huet, B.; Pahwa, R. Selective increase in monocyte p38 mitogen-activated protein kinase activity in metabolic syndrome. Diab Vasc. Dis. Res. 2016, 13, 93–96.
- 24.
Adams-Huet, B.; Devaraj, S.; Siegel, D.; et al. Increased adipose tissue insulin resistance in metabolic syndrome: Relationship to circulating adipokines. Metab. Syndr. Relat. Disord. 2014, 12, 503–508.
- 25.
Adams-Huet, B.; Zubirán, R.; Remaley, A.T.; et al. The triglyceride-glucose index is superior to homeostasis model assessment of insulin resistance in predicting metabolic syndrome in an adult population in the United States. J. Clin. Lipidol. 2024, 18, e518–e524. https://doi.org/10.1016/j.jacl.2024.04.130.
- 26.
Jialal, I.; Kaur, H.; Devaraj, S. Toll-like receptor status in obesity and metabolic syndrome: A translational perspective. J. Clin. Endocrinol. Metab. 2014, 99, 39–48.
- 27.
Adams-Huet, B.; Jialal, I. Correlates of Insulin Resistance in Nascent Metabolic Syndrome. Clin. Med. Insights Endocrinol. Diabetes 2023, 16, 11795514231168279. https://doi.org/10.1177/11795514231168279.
- 28.
Adams-Huet, B.; Jialal, I. An Increasing Triglyceride-Glucose Index Is Associated with a Pro-Inflammatory and Pro-Oxidant Phenotype. J. Clin. Med. 2024, 13, 3941. https://doi.org/10.3390/jcm13133941.
- 29.
Saraheimo, M.; Teppo, A.M.; Forsblom, C.; et al. Diabetic nephropathy is associated with low-grade inflammation in Type 1 diabetic patients. Diabetologia. 2003, 46, 1402–1407. https://doi.org/10.1007/s00125-003-1194-5.
- 30.
Llauradó, G.; Gallart, L.; Tirado, R.; et al. Insulin resistance, low-grade inflammation and type 1 diabetes mellitus. Acta Diabetol. 2012, 49, 33–39. https://doi.org/10.1007/s00592-011-0257-1.
- 31.
Ferreira-Hermosillo, A.; Molina-Ayala, M.; Ramírez-Rentería, C.; et al. Inflammatory Cytokine Profile Associated with Metabolic Syndrome in Adult Patients with Type 1 Diabetes. J. Diabetes Res. 2015, 2015, 972073. https://doi.org/10.1155/2015/972073.
- 32.
Xing, D.; Xu, J.; Weng, X.; et al. Correlation between estimated glucose disposal rate, insulin resistance, and cardiovascular mortality among individuals with metabolic syndrome: A population-based analysis, evidence from NHANES 1999–2018. Diabetol. Metab. Syndr. 2025, 17, 11. https://doi.org/10.1186/s13098-024-01574-8.
- 33.
Xu, L.; Ma, J.; Xu, Y. The effects of estimated glucose disposal rate and high sensitivity C-reactive protein on risk of incident cardiovascular diseases in middle-aged and elderly Chinese adults: A nationwide prospective cohort study. Lipids Health Dis. 2025, 24, 234. https://doi.org/10.1186/s12944-025-02653-z.