- 1.
Gerstein, H.C. Dysglycaemia: A cardiovascular risk factor. Diabetes Res Clin Pract. 1998, 40, S9–S14. https://doi.org/10.1016/s0168-8227(98)00036-9.
- 2.
American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48 (Suppl. S1), S27–S49. https://doi.org/10.2337/dc25-S002.
- 3.
National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 1979, 28, 1039–1057. https://doi.org/10.2337/diab.28.12.1039.
- 4.
WHO Expert Committee on Diabetes Mellitus: Second report. World Health Organ. Tech. Rep. Ser. 1980, 646, 1–80.
- 5.
Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997, 20, 1183–1197. https://doi.org/10.2337/diacare.20.7.1183.
- 6.
Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 26 (Suppl. 1), S5–S20. https://doi.org/10.2337/diacare.26.2007.s5.
- 7.
Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998, 15, 539–553. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S.
- 8.
Nathan, D.M.; Davidson, M.B.; DeFronzo, R.A.; et al. Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care 2007, 30, 753–759. https://doi.org/10.2337/dc07-9920.
- 9.
Panteghini, M.; John, W.G.; IFCC Scientific Division. Implementation of haemoglobin A1c results traceable to the IFCC reference system: The way forward. Clin Chem. Lab. Med. 2007, 45, 942–944. https://doi.org/10.1515/CCLM.2007.198.
- 10.
Little, R.R.; Rohlfing, C.L. The long and winding road to optimal HbA1c measurement. Clin. Chim. Acta 2013, 418, 63–71. https://doi.org/10.1016/j.cca.2012.12.026.
- 11.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33 (Suppl. 1), S62–S69. https://doi.org/10.2337/dc10-S062.
- 12.
International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009, 32, 1327–1334. https://doi.org/10.2337/dc09-9033.
- 13.
Stern, M.P.; Rosenthal, M.; Haffner, S.M. A new concept of impaired glucose tolerance. Relation to cardiovascular risk. Arteriosclerosis 1985, 5, 311–314. https://doi.org/10.1161/01.atv.5.4.311.
- 14.
Rushforth, N.B.; Bennett, P.H.; Steinberg, A.G.; et al. Diabetes in the Pima Indians: Evidence of bimodality in glucose tolerance distributions. Diabetes 1971, 20, 756–765. https://doi.org/10.2337/diab.20.11.756.
- 15.
Zimmet, P.; Whitehouse, S. Bimodality of fasting and two-hour glucose tolerance distributions in a Micronesian population. Diabetes 1978, 27, 793–800. https://doi.org/10.2337/diab.27.8.793.
- 16.
Balion, C.M.; Raina, P.S.; Gerstein, H.C.; et al. Reproducibility of impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) classification: A systematic review. Clin. Chem. Lab. Med. 2007, 45, 1180–1185. https://doi.org/10.1515/CCLM.2007.505.
- 17.
Tjaden, A.H.; Edelstein, S.L.; Arslanian, S.; et al. Reproducibility of Glycemic Measures Among Dysglycemic Youth and Adults in the RISE Study. J. Clin. Endocrinol. Metab. 2023, 108, e1125–e1133. https://doi.org/10.1210/clinem/dgad135.
- 18.
Meigs, J.B.; Muller, D.C.; Nathan, D.M.; et al. The natural history of progression from normal glucose tolerance to type 2 diabetes in the Baltimore Longitudinal Study of Aging. Diabetes 2003, 52, 1475–1484. https://doi.org/10.2337/diabetes.52.6.1475.
- 19.
Halban, P.A.; Polonsky, K.S.; Bowden, D.W.; et al. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment. J. Clin. Endocrinol. Metab. 2014, 99, 1983–1992. https://doi.org/10.1210/jc.2014-1425.
- 20.
Buchanan, T.A.; Xiang, A.H.; Peters, R.K.; et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes 2002, 51, 2796–2803. https://doi.org/10.2337/diabetes.51.9.2796.
- 21.
Knowler, W.C.; Hamman, R.F.; Edelstein, S.L.; et al. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 2005, 54, 1150–1156. https://doi.org/10.2337/diabetes.54.4.1150.
- 22.
Abdul-Ghani, M.A.; Tripathy, D.; DeFronzo, R.A. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006, 29, 1130–1139. https://doi.org/10.2337/diacare.2951130.
- 23.
Perreault, L.; Bergman, B.C.; Playdon, M.C.; et al. Impaired fasting glucose with or without impaired glucose tolerance: Progressive or parallel states of prediabetes? Am. J. Physiol. Endocrinol. Metab. 2008, 295, E428–E435. https://doi.org/10.1152/ajpendo.90354.2008.
- 24.
Festa, A.; D’Agostino Jr., R.; Hanley, A.J.; et al. Differences in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose. Diabetes 2004, 53, 1549–1555. https://doi.org/10.2337/diabetes.53.6.1549.
- 25.
Meyer, C.; Pimenta, W.; Woerle, H.J.; et al. Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care 2006, 29, 1909–1914. https://doi.org/10.2337/dc06-0438.
- 26.
Brannick, B.; Dagogo-Jack, S. Prediabetes and Cardiovascular Disease: Pathophysiology and Interventions for Prevention and Risk Reduction. Endocrinol. Metab. Clin. N. Am. 2018, 47, 33–50. https://doi.org/10.1016/j.ecl.2017.10.001.
- 27.
Cai, X.; Zhang, Y.; Li, M.; et al. Association between prediabetes and risk of all cause mortality and cardiovascular disease: Updated meta-analysis. BMJ 2020, 370, m2297. https://doi.org/10.1136/bmj.m2297.
- 28.
DECODE Study Group; European Diabetes Epidemiology Group. Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases? Diabetes Care 2003, 26, 688–696. https://doi.org/10.2337/diacare.26.3.688.
- 29.
Ford, E.S.; Zhao, G.; Li, C. Pre-diabetes and the risk for cardiovascular disease: A systematic review of the evidence. J. Am. Coll. Cardiol. 2010, 55, 1310–1317. https://doi.org/10.1016/j.jacc.2009.10.060.
- 30.
Bartnik, M.; Rydén, L.; Ferrari, R.; et al. The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe: The Euro Heart Survey on diabetes and the heart. Eur. Heart J. 2004, 25, 1880–1890. https://doi.org/10.1016/j.ehj.2004.07.027.
- 31.
de Vegt, F.; Dekker, J.M.; Ruhé, H.G.; et al. Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: The Hoorn Study. Diabetologia 1999, 42, 926–931. https://doi.org/10.1007/s001250051249.
- 32.
Tominaga, M.; Eguchi, H.; Manaka, H.; et al. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 1999, 22, 920–924. https://doi.org/10.2337/diacare.22.6.920.
- 33.
Meigs, J.B.; Nathan, D.M.; D’Agostino, R.B.; et al. Fasting and postchallenge glycemia and cardiovascular disease risk: The Framingham Offspring Study. Diabetes Care 2002, 25, 1845–1850. https://doi.org/10.2337/diacare.25.10.1845.
- 34.
Kleinherenbrink, W.; Osei, E.; den Hertog, H.M.; et al. Prediabetes and macrovascular disease: Review of the association, influence on outcome and effect of treatment. Eur. J. Intern. Med. 2018, 55, 6–11. https://doi.org/10.1016/j.ejim.2018.07.001.
- 35.
Norhammar, A.; Tenerz, A.; Nilsson, G.; et al. Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: A prospective study. Lancet 2002, 359, 2140–2144. https://doi.org/10.1016/S0140-6736(02)09089-X.
- 36.
Levitsky, Y.; Pencina, M.; D’Agostino, R.; et al. Impact of impaired fasting glucose on cardiovascular disease. J. Am. Coll. Cardiol. 2008, 51, 264–270.
- 37.
Milman, S.; Crandall, J.P. Mechanisms of vascular complications in prediabetes. Med. Clin. N. Am. 2011, 95, 309–325. https://doi.org/10.1016/j.mcna.2010.11.004.
- 38.
Haratz, S.; Tanne, D. Diabetes, hyperglycemia and the management of cerebrovascular disease. Curr. Opin. Neurol. 2011, 24, 81–88. https://doi.org/10.1097/WCO.0b013e3283418fed.
- 39.
Libby, P.; Buring, J.E.; Badimon, L.; et al. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. https://doi.org/10.1038/s41572-019-0106-z.
- 40.
Gerstein, H.C.; Pogue, J.; Mann, J.F.; et al. The relationship between dysglycaemia and cardiovascular and renal risk in diabetic and non-diabetic participants in the HOPE study: A prospective epidemiological analysis. Diabetologia 2005, 48, 1749–1755. https://doi.org/10.1007/s00125-005-1858-4.
- 41.
Huang, D.; Refaat, M.; Mohammedi, K.; et al. Macrovascular Complications in Patients with Diabetes and Prediabetes. Biomed. Res. Int. 2017, 2017, 7839101. https://doi.org/10.1155/2017/7839101.
- 42.
Available online: https://emedicine.medscape.com/article/1225122-overview (accessed on 2 August 2025).
- 43.
Baranowska-Jurkun, A.; Matuszewski, W.; Bandurska-Stankiewicz, E. Chronic Microvascular Complications in Prediabetic States-An Overview. J. Clin. Med. 2020, 9, 3289. https://doi.org/10.3390/jcm9103289.
- 44.
Sune, M.P.; Sune, M.; Sune, P.; Dhok, A. Prevalence of Retinopathy in Prediabetic Populations: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e49602. https://doi.org/10.7759/cureus.49602.
- 45.
Kirthi, V.; Nderitu, P.; Alam, U.; et al. The prevalence of retinopathy in prediabetes: A systematic review. Surv. Ophthalmol. 2022, 67, 1332–1345. https://doi.org/10.1016/j.survophthal.2022.04.002.
- 46.
Available online: https://emedicine.medscape.com/article/1170337-overview (accessed on 2 August 2025).
- 47.
Grisold, A.; Callaghan, B.C.; Feldman, E.L. Mediators of diabetic neuropathy: Is hyperglycemia the only culprit? Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 103–111. https://doi.org/10.1097/MED.0000000000000320.
- 48.
Stino, A.M.; Smith, A.G. Peripheral neuropathy in prediabetes and the metabolic syndrome. J. Diabetes Investig. 2017, 8, 646–655. https://doi.org/10.1111/jdi.12650.
- 49.
Riahi, R.; Seindareh, S.; Aminorroaya, A.; et al. The Relationship Between Prediabetes and Peripheral Neuropathy-A Systematic Review and Meta-Analysis. Eur. J. Neurol. 2025, 32, e70283. https://doi.org/10.1111/ene.70283.
- 50.
Papanas, N.; Vinik, A.I.; Ziegler, D. Neuropathy in prediabetes: Does the clock start ticking early? Nat. Rev. Endocrinol. 2011, 7, 682–690. https://doi.org/10.1038/nrendo.2011.113.
- 51.
Papanas, N.; Ziegler, D. Prediabetic neuropathy: Does it exist? Curr. Diabetes Rep. 2012, 12, 376–383. https://doi.org/10.1007/s11892-012-0278-3.
- 52.
Zilliox, L.A.; Russell, J.W. Is there cardiac autonomic neuropathy in prediabetes? Auton. Neurosci. 2020, 229, 102722. https://doi.org/10.1016/j.autneu.2020.102722.
- 53.
Eleftheriadou, A.; Williams, S.; Nevitt, S.; et al. The prevalence of cardiac autonomic neuropathy in prediabetes: A systematic review. Diabetologia 2021, 64, 288–303. https://doi.org/10.1007/s00125-020-05316-z.
- 54.
Ziegler, D.; Voss, A.; Rathmann, W.; et al. Increased prevalence of cardiac autonomic dysfunction at different degrees of glucose intolerance in the general population: The KORA S4 survey. Diabetologia 2015, 58, 1118–1128.
- 55.
Available online: https://emedicine.medscape.com/article/238946-overview (accessed on 2 August 2025).
- 56.
Schlesinger, S.; Neuenschwander, M.; Barbaresko, J.; et al. Prediabetes and risk of mortality, diabetes-related complications and comorbidities: Umbrella review of meta-analyses of prospective studies. Diabetologia 2022, 65, 275–285. https://doi.org/10.1007/s00125-021-05592-3.
- 57.
Lamprou, S.; Koletsos, N.; Mintziori, G.; et al. Microvascular and Endothelial Dysfunction in Prediabetes. Life 2023, 13, 644. https://doi.org/10.3390/life13030644.
- 58.
Nathan, D.M.; Bennett, P.H.; Crandall, J.P.; et al. Does diabetes prevention translate into reduced long-term vascular complications of diabetes? Diabetologia 2019, 62, 1319–1328. https://doi.org/10.1007/s00125-019-4928-8.
- 59.
Qiao, Q.; Jousilahti, P.; Eriksson, J.; et al. Predictive properties of impaired glucose tolerance for cardiovascular risk are not explained by the development of overt diabetes during follow-up. Diabetes Care 2003, 26, 2910–2914. https://doi.org/10.2337/diacare.26.10.2910.
- 60.
Rooney, M.R.; Wallace, A.S.; Echouffo Tcheugui, J.B.; et al. Prediabetes is associated with elevated risk of clinical outcomes even without progression to diabetes. Diabetologia 2025, 68, 357–366. https://doi.org/10.1007/s00125-024-06315-0.
- 61.
Pan, X.R.; Li, G.W.; Hu, Y.H.; et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997, 20, 537–544. https://doi.org/10.2337/diacare.20.4.537.
- 62.
Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. https://doi.org/10.1056/NEJMoa012512.
- 63.
Li, G.; Zhang, P.; Wang, J.; et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: A 20-year follow-up study. Lancet 2008, 371, 1783–1789. https://doi.org/10.1016/S0140-6736(08)60766-7.
- 64.
Gong, Q.; Zhang, P.; Wang, J.; et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019, 7, 452–461. https://doi.org/10.1016/S2213-8587(19)30093-2.
- 65.
Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: The Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015, 3, 866–875. https://doi.org/10.1016/S2213-8587(15)00291-0.
- 66.
Chiasson, J.L.; Josse, R.G.; Gomis, R.; et al. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: The STOP-NIDDM trial. JAMA 2003, 290, 486–494. https://doi.org/10.1001/jama.290.4.486.
- 67.
Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. https://doi.org/10.1056/NEJM200105033441801.
- 68.
American Diabetes Association Professional Practice Committee. 3. Prevention or Delay of Diabetes and Associated Comorbidities: Standards of Care in Diabetes-2025. Diabetes Care 2025, 48 (Suppl. 1), S50–S58. https://doi.org/10.2337/dc25-S003.
- 69.
Diabetes Prevention Program (DPP) Research Group. The Diabetes Prevention Program (DPP): Description of lifestyle intervention. Diabetes Care 2002, 25, 2165–2171. https://doi.org/10.2337/diacare.25.12.2165.
- 70.
Evert, A.B.; Dennison, M.; Gardner, C.D.; et al. Nutrition Therapy for Adults with Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019, 42, 731–754. https://doi.org/10.2337/dci19-0014.
- 71.
Salas-Salvadó, J.; Guasch-Ferré, M.; Lee, C.H.; et al. Protective Effects of the Mediterranean Diet on Type 2 Diabetes and Metabolic Syndrome. J. Nutr. 2015, 146, 920S–927S. https://doi.org/10.3945/jn.115.218487.
- 72.
Torgerson, J.S.; Hauptman, J.; Boldrin, M.N.; et al. XENical in the prevention of diabetes in obese subjects (XENDOS) study: A randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 2004, 27, 155–161. https://doi.org/10.2337/diacare.27.1.155.
- 73.
Gerstein, H.C.; Yusuf, S.; Bosch, J.; et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: A randomised controlled trial. Lancet 2006, 368, 1096–1105. https://doi.org/10.1016/S0140-6736(06)69420-8.
- 74.
DeFronzo, R.A.; Tripathy, D.; Schwenke, D.C.; et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N. Engl. J. Med. 2011, 364, 1104–1115. https://doi.org/10.1056/NEJMoa1010949.
- 75.
Tripathy, D.; Schwenke, D.C.; Banerji, M.; et al. Diabetes Incidence and Glucose Tolerance after Termination of Pioglitazone Therapy: Results from ACT NOW. J. Clin. Endocrinol. Metab. 2016, 101, 2056–2062. https://doi.org/10.1210/jc.2015-4202. E.
- 76.
Gerstein, H.C.; Bosch, J.; Dagenais, G.R.; et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med. 2012, 367, 319–328. https://doi.org/10.1056/NEJMoa1203858.
- 77.
Grunvald, E.; Shah, R.; Hernaez, R.; et al. AGA Clinical Practice Guideline on Pharmacological Interventions for Adults With Obesity. Gastroenterology 2022, 163, 1198–1225. https://doi.org/10.1053/j.gastro.2022.08.045.
- 78.
Ferrannini, E. Tirzepatide as an Insulin Sensitizer. J. Clin. Endocrinol. Metab. 2022, 107, e1752–e1753. https://doi.org/10.1210/clinem/dgab803.
- 79.
McGowan, B.M.; Bruun, J.M.; Capehorn, M.; et al. Efficacy and safety of once-weekly semaglutide 2·4 mg versus placebo in people with obesity and prediabetes (STEP 10): A randomised, double-blind, placebo-controlled, multicentre phase 3 trial. Lancet Diabetes Endocrinol. 2024, 12, 631–642. https://doi.org/10.1016/S2213-8587(24)00182-7.
- 80.
Jastreboff, A.M.; le Roux, C.W.; Stefanski, A.; et al. Tirzepatide for Obesity Treatment and Diabetes Prevention. N. Engl. J. Med. 2025, 392, 958–971. https://doi.org/10.1056/NEJMoa2410819.
- 81.
Diabetes Prevention Program Research Group. Effects of withdrawal from metformin on the development of diabetes in the diabetes prevention program. Diabetes Care 2003, 26, 977–980. https://doi.org/10.2337/diacare.26.4.977.
- 82.
Wilding, J.P.H.; Batterham, R.L.; Davies, M.; et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: The STEP 1 trial extension. Diabetes Obes. Metab. 2022, 24, 1553–1564. https://doi.org/10.1111/dom.14725.
- 83.
Kubota, M.; Yamamoto, K.; Yoshiyama, S. Effect on Hemoglobin A1c (HbA1c) and Body Weight After Discontinuation of Tirzepatide, a Novel Glucose-Dependent Insulinotropic Peptide (GIP) and Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist: A Single-Center Case Series Study. Cureus 2023, 15, e46490. https://doi.org/10.7759/cureus.46490.
- 84.
Jeon, J.Y.; Choi, S.E.; Ha, E.S.; et al. GLP-1 improves palmitate-induced insulin resistance in human skeletal muscle via SIRT1 activity. Int. J. Mol. Med. 2019, 44, 1161–1171. https://doi.org/10.3892/ijmm.2019.4272.
- 85.
Love, K.M.; Liu, J.; Regensteiner, J.G.; et al. GLP-1 and insulin regulation of skeletal and cardiac muscle microvascular perfusion in type 2 diabetes. J. Diabetes 2020, 12, 488–498. https://doi.org/10.1111/1753-0407.13045.
- 86.
Rett, K.; Gottwald-Hostalek, U. Understanding prediabetes: Definition, prevalence, burden and treatment options for an emerging disease. Curr. Med. Res. Opin. 2019, 35, 1529–1534. https://doi.org/10.1080/03007995.2019.1601455.
- 87.
Neves, J.S.; Buysschaert, M.; Bergman, M. Editorial: Prediabetes: New insights on the diagnosis, risk stratification, comorbidites, cardiovascular disease, microvascular complications, and treatment. Front. Endocrinol. 2023, 14, 1214479. https://doi.org/10.3389/fendo.2023.1214479.
- 88.
Prasad, H.; Ryan, D.A.; Celzo, M.F.; et al. Metabolic syndrome: Definition and therapeutic implications. Postgrad. Med. 2012, 124, 21–30. https://doi.org/10.3810/pgm.2012.01.2514.
- 89.
Vidal-Petiot, E. Thresholds for Hypertension Definition, Treatment Initiation, and Treatment Targets: Recent Guidelines at a Glance. Circulation 2022, 146, 805–807. https://doi.org/10.1161/CIRCULATIONAHA.121.055177.
- 90.
Bhansali, A.; Dutta, P. Pathophysiology of prediabetes. J. Indian Med. Assoc. 2005, 103, 594–595, 599.
- 91.
Cersosimo, E.; Solis-Herrera, C.; Trautmann, M.E.; et al. Assessment of pancreatic β-cell function: Review of methods and clinical applications. Curr Diabetes Rev. 2014, 10, 2–42. https://doi.org/10.2174/1573399810666140214093600.
- 92.
Salvatore, T.; Galiero, R.; Caturano, A.; et al. Current Knowledge on the Pathophysiology of Lean/Normal-Weight Type 2 Diabetes. Int. J. Mol. Sci. 2022, 24, 658. https://doi.org/10.3390/ijms24010658.
- 93.
Pfeiffer, A.F.H.; Kabisch, S. Lean (Pre)Diabetes—Underestimated and Underexplored. J. Clin. Endocrinol. Metab. 2021, 106, e3278–e3280. https://doi.org/10.1210/clinem/dgab198.
- 94.
Alejandro, E.U.; Gregg, B.; Blandino-Rosano, M.; et al. Natural history of β-cell adaptation and failure in type 2 diabetes. Mol. Aspects Med. 2015, 42, 19–41. https://doi.org/10.1016/j.mam.2014.12.002.
- 95.
DeFronzo, R.A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. N. Am. 2004, 88, 787–835. https://doi.org/10.1016/j.mcna.2004.04.013.
- 96.
Emanuelsson, F.; Benn, M. LDL-Cholesterol versus Glucose in Microvascular and Macrovascular Disease. Clin. Chem. 2021, 67, 167–182. https://doi.org/10.1093/clinchem/hvaa242.
- 97.
Ramlo-Halsted, B.A.; Edelman, S.V. The natural history of type 2 diabetes. Implications for clinical practice. Prim. Care 1999, 26, 771–789. https://doi.org/10.1016/s0095-4543(05)70130-5.
- 98.
Coutinho, M.; Gerstein, H.C.; Wang, Y.; et al. The relationship between glucose and incident cardiovascular events. A meta-regression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999, 22, 233–240.
- 99.
Liang, Y.; Wang, M.; Wang, C.; et al. The Mechanisms of the Development of Atherosclerosis in Prediabetes. Int. J. Mol. Sci. 2021, 22, 4108. https://doi.org/10.3390/ijms22084108.
- 100.
Neves, J.S.; Newman, C.; Bostrom, J.A.; et al. Management of dyslipidemia and atherosclerotic cardiovascular risk in prediabetes. Diabetes Res. Clin. Pract. 2022, 190, 109980. https://doi.org/10.1016/j.diabres.2022.109980.
- 101.
Finocchio, T.; Surbhi, S.; Madlock-Brown, C. Time to Development of Overt Diabetes and Macrovascular and Microvascular Complications Among Patients with Prediabetes: A Retrospective Cohort Study. Cureus 2021, 13, e20079. https://doi.org/10.7759/cureus.20079.
- 102.
Zeng, M.; Sun, E.; Zhu, L.; et al. Influence of prediabetes on the prognosis of patients with myocardial infarction: A meta-analysis. Diabetol. Metab. Syndr. 2024, 16, 160. https://doi.org/10.1186/s13098-024-01381-1.
- 103.
Selvin, E.; Steffes, M.W.; Zhu, H.; et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Engl. J. Med. 2010, 362, 800–811.
- 104.
Di Angelantonio, E.; Gao, P.; Khan, H. et al. Glycated hemoglobin measurement and prediction of cardiovascular disease. JAMA 2014, 311, 1225–1233. https://doi.org/10.1001/jama.2014.1873.
- 105.
Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/disease (accessed on 2 August 2025).
- 106.
Available online: https://www.aapc.com/codes/icd-10-codes/R73.03?srsltid=AfmBOooXLlnuamlo9uOlDQnRv25u-QWii7g7PR78r_GJMqDml7mEiEkr (accessed on 1 August 2025).
- 107.
Available online: https://www.cdc.gov/diabetes/php/data-research/index.html (accessed on 2 August 2025).
- 108.
Available online: https://www.cdc.gov/diabetes/prevention-type-2/truth-about-prediabetes.html#:~:text=Don’t%20let%20the%20%E2%80%9Cpre,%2C%20heart%20disease%2C%20and%20stroke (accessed on 2 August 2025).
- 109.
Guasch-Ferré, M.; Hruby, A.; Toledo, E.; et al. Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis. Diabetes Care 2016, 39, 833–846. https://doi.org/10.2337/dc15-2251.
- 110.
Dorcely, B.; Katz, K.; Jagannathan, R.; et al. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab. Syndr. Obes. 2017, 10, 345–361. https://doi.org/10.2147/DMSO.S100074.
- 111.
Gar, C.; Rottenkolber, M.; Prehn, C.; et al. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Crit. Rev. Clin. Lab. Sci. 2018, 55, 21–32. https://doi.org/10.1080/10408363.2017.1414143.
- 112.
Zhou, W.; Sailani, M.R.; Contrepois, K.; et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature 2019, 569, 663–671. https://doi.org/10.1038/s41586-019-1236-x.
- 113.
Yang, T.; Liu, Y.; Li, L.; et al. Correlation between the triglyceride-to-high-density lipoprotein cholesterol ratio and other unconventional lipid parameters with the risk of prediabetes and Type 2 diabetes in patients with coronary heart disease: A RCSCD-TCM study in China. Cardiovasc. Diabetol. 2022, 21, 93. https://doi.org/10.1186/s12933-022-01531-7.
- 114.
Dankner, R.; Roth, J. The Personalized Approach for Detecting Prediabetes and Diabetes. Curr. Diabetes Rev. 2016, 12, 58–65. https://doi.org/10.2174/1573399811666150109121219.