- 1.
Wang, H.; Liu, Z.; Wang, X.; et al. An analysis of factors affecting the severity of marine accidents. Reliab. Eng. Syst. Saf. 2021, 210, 107513.
- 2.
Li, H.; Çelik, C.; Bashir, M.; et al. Incorporation of a global perspective into data-driven analysis of maritime collision accident risk. Reliab. Eng. Syst. Saf. 2024, 249, 110187.
- 3.
Wu, J.; Thorne-Large, J.; Zhang, P. Safety first: The risk of over-reliance on technology in navigation. J. Transp. Saf. Secur. 2022, 14, 1220–1246.
- 4.
Li, S.; Meng, Q.; Qu, X. An Overview of Maritime Waterway Quantitative Risk Assessment Models. Risk Anal. 2011, 32, 496–512.
- 5.
Rong, H.; Teixeira, A.P.; Guedes Soares, C. Spatial correlation analysis of near ship collision hotspots with local maritime traffic characteristics. Reliab. Eng. Syst. Saf. 2021, 209, 107463.
- 6.
Winkle, T. Safety Benefits of Automated Vehicles: Extended Findings from Accident Research for Development, Validation and Testing. In Autonomous Driving; Maurer, M., Gerdes, J., Lenz, B., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 335–364.
- 7.
Qu, X.; Meng, Q.; Suyi, L. Ship collision risk assessment for the Singapore Strait. Accid. Anal. Prev. 2011, 43, 2030–2036.
- 8.
Silveira, P.A.M.; Teixeira, A.P.; Soares, C.G. Use of AIS Data to Characterise Marine Traffic Patterns and Ship Collision Risk off the Coast of Portugal. J. Navig. 2013, 66, 879–898.
- 9.
Zhang, W.; Goerlandt, F.; Montewka, J.; et al. A method for detecting possible near miss ship collisions from AIS data. Ocean. Eng. 2015, 107, 60–69.
- 10.
Zheng, K.; Chen, Y.; Jiang, Y.; et al. A SVM based ship collision risk assessment algorithm. Ocean. Eng. 2020, 202, 107062.
- 11.
Liu, Z.; Zhang, B.; Zhang, M.; et al. A quantitative method for the analysis of ship collision risk using AIS data. Ocean. Eng. 2023, 272, 113906.
- 12.
Moran, P. Notes on Continuous Stochastic henomena. Biometrika 1950, 37, 17–23.
- 13.
Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306.
- 14.
Tsou, M.C. Discovering Knowledge from AIS Database for Application in VTS. J. Navig. 2010, 63, 449–469.
- 15.
Zhang, L.; Meng, Q.; Fang, T.F. Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 287–304.
- 16.
Romano, B.; Jiang, Z. Visualizing Traffic Accident Hotspots Based on Spatial-Temporal Network Kernel Density Estimation. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 7–10 November 2017.
- 17.
Kang, Y.; Cho, N.; Son, S. Spatiotemporal characteristics of elderly population’s traffic accidents in Seoul using space-time cube and space-time kernel density estimation. PLoS ONE 2018, 13, e0196845.
- 18.
Huang, X.; Wen, Y.; Zhang, F.; et al. A review on risk assessment methods for maritime transport. Ocean. Eng. 2023, 279, 114577.
- 19.
Zhang, J.; Teixeira, Â.P.; Guedes Soares, C.; et al. Quantitative assessment of collision risk influence factors in the Tianjin port. Saf. Sci. 2018, 110, 363–371.
- 20.
Hänninen, M. Bayesian networks for maritime traffic accident prevention: Benefits and challenges. Accid. Anal. Prev. 2014, 73, 305–312.
- 21.
Svanberg, M.; Santén, V.; Hörteborn, A.; et al. AIS in maritime research. Mar. Policy 2019, 106, 103520.
- 22.
Yang, D.; Wu, L.; Wang, S.; et al. How big data enriches maritime research—A critical review of Automatic Identification System (AIS) data applications. Transp. Rev. 2019, 39, 755–773.
- 23.
Tritsarolis, A.; Chondrodima, E.; Pelekis, N.; et al. Vessel Collision Risk Assessment using AIS Data: A Machine Learning Approach. In Proceedings of the 23rd IEEE International Conference on Mobile Data Management (MDM), Paphos, Cyprus, 6–9 June 2022; pp. 425–430.
- 24.
AMSA (Australian Maritime Safety Authority). Digital Data. Available online: https://www.operations.amsa.gov.au/Spatial/DataServices/DigitalData (accessed on 5 July 2023).
- 25.
Park, J.; Jeong, J.S. An Estimation of Ship Collision Risk Based on Relevance Vector Machine. J. Mar. Sci. Eng. 2021, 9, 538.
- 26.
Dong, W.; Zhang, P.; Li, J. Safety First—A Critical Examination of the Lights and Shapes in COLREGs. J. Mar. Sci. Eng. 2023, 11, 1508.
- 27.
Nakaya, T.; Yano, K. Visualising Crime Clusters in a Space-time Cube: An Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation and Scan Statistics. Trans. GIS 2010, 14, 223–239.
- 28.
Zhang, M.; Montewka, J.; Manderbacka, T.; et al. A Big Data Analytics Method for the Evaluation of Ship–Ship Collision Risk reflecting Hydrometeorological Conditions. Reliab. Eng. Syst. Saf. 2021, 213, 107674.
- 29.
Sail-world. Glorious forecast for start of 50th anniversary of Melbourne to Hobart Yacht Race. Available online: https://www.sail-world.com/news/257123/Glorious-forecast-for-start-of-50th-M2H-Yacht-Race (accessed on 25 June 2023).
- 30.
Fan, H.; Lu, J.; Chang, Z.; et al. A Bayesian network based—TOPSIS framework to dynamically control the risk of maritime piracy. Marit. Policy Manag. 2024, 51, 1582–1601.