2505000621
  • Open Access
  • Review
A Review of Peripheral Refraction in Myopia Research
  • Zhenghua Lin 1, 2, *,   
  • Weizhong Lan 2, 3,   
  • Zhikuan Yang 2, 3,   
  • Pablo Artal 1, 2

Received: 07 Feb 2025 | Revised: 27 Apr 2025 | Accepted: 28 Apr 2025 | Published: 12 May 2025

Abstract

Myopia has become a critical global public health issue, driven by the increasing prevalence of pathological myopia, which poses significant risks to visual health and leads to potential economic productivity losses. The theory of peripheral defocus affecting the visual feedback mechanism in emmetropization may play a role in the prediction and management of myopia. However, progress has been hindered by challenges, including the ambiguous definition and classification of peripheral defocus, as well as inconsistencies in clinical research findings. This review offers a comprehensive examination of peripheral refraction, encompassing its definition, measurement methodologies, characteristics across different refractive states, clinical applications, and underlying mechanisms. Additionally, it addresses current research limitations, such as the need to differentiate between intrinsic and extrinsic peripheral defocus and the absence of high-resolution measurement tools suitable for large-scale clinical studies. By advancing the understanding of peripheral refraction, this review aims to inform future researchers and clinical practitioners, paving the way for more effective strategies to prevent and manage myopia in children.

References 

  • 1.
    Jonas,B.; Ang, M.; Cho, P.; et al. IMI Prevention of myopia and its progression. Investig. Ophthalmol. Vis. Sci. 2021, 62, 6.
  • 2.
    Resnikoff,; Jonas, J.B.; Friedman, D.; et al. Myopia—A 21st century public health issue. Investig. Ophthalmol. Vis. Sci. 2019, 60, Mi–Mii.
  • 3.
    Holden,A.; Fricke, T.R.; Wilson, D.A.; et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042.
  • 4.
    WHsu,; Cheng, C.Y.; Liu, J.H.; et al. Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan: The Shihpai Eye Study. Ophthalmology 2004, 111, 62–69.
  • 5.
    Xu,; Wang, Y.; Li, Y.; et al. Causes of blindness and visual impairment in urban and rural areas in Beijing: The Beijing Eye Study. Ophthalmology 2006, 113, 1134.e1–1134.e11.
  • 6.
    TFricke,; Jong, M.; Naidoo, K.S.; et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: Systematic review, meta-analysis and modelling. Br. J. Ophthalmol. 2018, 102, 855–862.
  • 7.
    Morgan, I.G.; French, A.N.; Ashby, R.S.;et The epidemics of myopia: Aetiology and prevention. Prog. Retin. Eye Res. 2018, 62, 134–149.
  • 8.
    Smith, T.S.; Frick, K.D.; Holden, B.A.;et Potential lost productivity resulting from the global burden of uncorrected refractive error. Bull. World Health Organ. 2009, 87, 431–437.
  • 9.
    Provis, J.M.; Dubis, A.M.; Maddess, T.;et Adaptation of the central retina for high acuity vision: Cones, the fovea and the avascular zone. Prog. Retin. Eye Res. 2013, 35, 63–81.
  • 10.
    Labhishetty, V.; Cholewiak, S.A.; Banks, M.S.Contributions of foveal and non-foveal retina to the human eye’s focusing J. Vis. 2019, 19, 18.
  • 11.
    Wandell, B.A.Foundations of Vision; Sinauer Associates: Sunderland, UK,
  • 12.
    Smith, E.L., III;Arumugam, B.; Hung, L.F.; et Eccentricity-dependent effects of simultaneous competing defocus on emmetropization in infant rhesus monkeys. Vision. Res. 2020, 177, 32–40.
  • 13.
    Flitcroft, D.I.The complex interactions of retinal, optical and environmental factors in myopia Prog. Retin. Eye Res. 2012, 31, 622–660.
  • 14.
    Young, T.The Bakerian On the mechanism of the eye. In Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London; The Royal Society: London, UK, 1832, pp. 35–39.
  • 15.
    Rempt, J.H.F.; Hoogenboom, W.P.H.Peripheral retinoscopy and the Ophthalmologia 1971, 162, 1–10.
  • 16.
    Hoogerheide, F.R.J.; Hoogenboom, W.P.H.Acquired myopia in young Ophthalmologia 1971, 163, 209–215.
  • 17.
    Jaeken, B.; Lundström, L.; Artal, P.Fast scanning peripheral wave-front sensor for the human eye. Opt. Soc. Am. 2011, 19, 7903–7913.
  • 18.
    Jaeken, J.T.B.; Schaeffel, F.; Artal, P.Comparison of two scanning instruments to measure peripheral refraction in the human J. Opt. Soc. Am. A 2011, 29, 258–264.
  • 19.
    Bakaraju, R.C.; Fedtke, C.; Ehrmann, K.;et Peripheral refraction and higher-order aberrations with cycloplegia and fogging lenses using the BHVI-EyeMapper. J. Optom. 2016, 9, 5–12.
  • 20.
    Lu, W.; Ji, R.; Ding, W.;et Agreement and repeatability of central and peripheral refraction by one novel multispectral-based refractor. Front. Med. 2021, 8, 777685.
  • 21.
    Sager, S.; Vicente-Jaen, A.; Lin, Z.;et Ultra-wide-angle peripheral refraction using a laser-scanning instrument. Biomed. Opt. Express 2024, 15, 6486–6498.
  • 22.
    Fernandez, E.J.; Sager, S.; Lin, Z.;et Instrument for fast whole-field peripheral refraction in the human eye. Biomed. Opt. Express 2022, 13, 2947–2959.
  • 23.
    Sheppard, A.L.; Davies, L.N.Clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500. Ophthalmic Physiol. Opt. 2010, 30, 143–151.
  • 24.
    Lan, W.; Lin, Z.; Yang, Z.;et Two-dimensional peripheral refraction and retinal image quality in emmetropic children. Sci. Rep. 2019, 9, 16203.
  • 25.
    Lin, Z.; Xi, X.; Wen, L.;et Relative myopic defocus in the superior retina as an indicator of myopia development in children. Investig. Ophthalmol. Vis. Sci. 2023, 64, 16.
  • 26.
    Schaeffel, F.; Hagel, G.; Eikermann, J.;et Lower-field myopia and astigmatism in amphibians and chickens. J. Opt. Soc. Am. A 1994, 11, 487–495.
  • 27.
    Hodos, W.; Erichsen, J.T.Lower-field myopia in birds: An adaptation that keeps the ground in Vision. Res. 1990, 30, 653–657.
  • 28.
    Fitzke, F.W.; Hayes, B.P.; Hodos, W.;et Refractive sectors in the visual field of the pigeon eye. J. Physiol. 1985, 369, 33–44.
  • 29.
    Choi, K.Y.; Mok, A.Y.; Do, C.W.;et The diversified defocus profile of the near-work environment and myopia development. Ophthalmic Physiol. Opt. 2020, 40, 463–471.
  • 30.
    Choi, K.Y.; Chan, H.H.Extrinsic and intrinsic factors regulating juvenile refractive development and eye Investig. Ophthalmol. Vis. Sci. 2021, 62, 21.
  • 31.
    Gibaldi, A.; Harb, E.N.; Wildsoet, C.F.;et A child-friendly wearable device for quantifying environmental risk factors for myopia. Transl. Vis. Sci. Technol. 2024, 13, 28.
  • 32.
    Read, S.A.; Alonso-Caneiro, D.; Hoseini-Yazdi, H.;et Objective measures of gaze behaviors and the visual environment during near-work tasks in young adult myopes and emmetropes. Transl. Vis. Sci. Technol. 2023, 12, 18.
  • 33.
    Lam, C.S.Y.; Tang, W.C.; Tse, D.Y.;et Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: A 2-year randomised clinical trial. Br. J. Ophthalmol. 2020, 104, 363–368.
  • 34.
    Bao, J.; Huang, Y.; Li, X.;et Spectacle lenses with aspherical lenslets for myopia control vs single-vision spectacle lenses: A randomized clinical trial. JAMA Ophthalmol. 2022, 140, 472–478.
  • 35.
    Alvarez-Peregrina, C.; Sanchez-Tena, M.A.; Martinez-Perez, C.;et Clinical Evaluation of MyoCare in Europe (CEME): Study protocol for a prospective, multicenter, randomized, double-blinded, and controlled clinical trial. Trials 2023, 24, 674.
  • 36.
    Gantes-Nuñez, J.; Jaskulski, M.; López-Gil, N.;et Optical characterisation of two novel myopia control spectacle lenses. Ophthalmic Physiol. Opt. 2023, 43, 388–401.
  • 37.
    Jaskulski, M.; Singh, N.K.; Bradley, A.;et Optical and imaging properties of a novel multi-segment spectacle lens designed to slow myopia progression. Ophthalmic Physiol. Opt. 2020, 40, 549–556.
  • 38.
    Arias, A.; Ohlendorf, A.; Artal, P.;et In-depth optical characterization of spectacle lenses for myopia progression management. Optica 2023, 10, 594–603.
  • 39.
    Papadogiannis, P.; Börjeson, C.; Lundström, L.Comparison of optical myopia control interventions: Effect on peripheral image quality and Biomed. Opt. Express 2023, 14, 3125–3137.
  • 40.
    Rosén, R.; Lundström, L.; Unsbo, P.;et Have we misinterpreted the study of Hoogerheide et al. (1971)? Optom. Vis. Sci. 2012, 89, 1235–1237.
  • 41.
    Schaeffel, F.; Glasser, A.; Howland, H.C.Accommodation, refractive error and eye growth in Vision. Res. 1988, 28, 639–657.
  • 42.
    Irving, E.L.; Sivak, J.G.; Callender, M.G.Refractive plasticity of the developing chick Ophthalmic Physiol. Opt. 1992, 12, 448–456.
  • 43.
    Irving, E.L.; Callender, M.G.; Sivak, J.G.Inducing ametropias in hatchling chicks by defocus—Aperture effects and cylindrical Vision. Res. 1995, 35, 1165–1174.
  • 44.
    Diether, S.; Schaeffel, F.Local changes in eye growth induced by imposed local refractive error despite active accommodation. Vision. Res. 1997, 37, 659–668.
  • 45.
    Smith,L., 3rd; Hung, L.F. The role of optical defocus in regulating refractive development in infant monkeys. Vision. Res. 1999, 39, 1415–1435.
  • 46.
    Smith,L., 3rd; Hung, L.F.; Huang, J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision. Res. 2009, 49, 2386–2392.
  • 47.
    Smith,L., 3rd; Ramamirtham, R.; Qiao-Grider, Y.; et al. Effects of foveal ablation on emmetropization and form-deprivation myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3914–3922.
  • 48.
    Kanda, H.; Oshika, T.; Hiraoka, T.;et Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: A 2-year multicenter randomized controlled trial. Jpn. J. Ophthalmol. 2018, 62, 537–543.
  • 49.
    Kratzer, T.(New) Approaches to reduce progression of myopia with spectacles from Carl Zeiss Acta Ophthalmol. 2012, 90.
  • 50.
    Cheng, D.; Woo, G.C.; Schmid, K.L.Bifocal lens control of myopic progression in Clin. Exp. Optom. 2011, 94, 24–32.
  • 51.
    Varnas, S.; Gu, X.; Metcalfe, A.Bayesian meta-analysis of myopia control with multifocal J. Clin. Med. 2021, 10.
  • 52.
    Atchison, D.A.; Charman, W.N.Optics of spectacle lenses intended to treat myopia Optom. Vis. Sci. 2024, 101, 238–249.
  • 53.
    Lam, C.S.; Tang, W.C.; Tse, D.Y.;et Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: A 2-year randomised clinical trial. Br. J. Ophthalmol. 2014, 98, 40–45.
  • 54.
    Lam, C.S.Y.; Tang, W.C.; Zhang, H.Y.;et Long-term myopia control effect and safety in children wearing DIMS spectacle lenses for 6 years. Sci. Rep. 2023, 13, 5475.
  • 55.
    Lam, C.S.Y.; Tang, W.C.; Qi, H.;et Effect of defocus incorporated multiple segments spectacle lens wear on visual function in myopic Chinese children. Transl. Vis. Sci. Technol. 2020, 9, 11.
  • 56.
    Lu, Y.; Lin, Z.; Wen, L.;et The adaptation and acceptance of defocus incorporated multiple segment lens for Chinese children. Am. J. Ophthalmol. 2020, 211, 207–216.
  • 57.
    Bao, J.; Yang, A.; Huang, Y.;et One-year myopia control efficacy of spectacle lenses with aspherical lenslets. Br. J. Ophthalmol. 2022, 106, 1171–1176.
  • 58.
    Liu, X.; Wang, P.; Xie, Z.;et One-year myopia control efficacy of cylindrical annular refractive element spectacle lenses. Acta Ophthalmol. 2023, 101, 651–657.
  • 59.
    Brennan, N.A.; Toubouti, Y.M.; Cheng, X.;et Efficacy in myopia control. Prog. Retin. Eye Res. 2021, 83, 100923.
  • 60.
    Liu, J.; Lu, Y.; Huang, D.;et The efficacy of defocus incorporated multiple segments lenses in slowing myopia progression: Results from diverse clinical circumstances. Ophthalmology 2023, 130, 542–550.
  • 61.
    Guo, H.; Li, X.; Zhang, X.;et Comparing the effects of highly aspherical lenslets versus defocus incorporated multiple segment spectacle lenses on myopia control. Sci. Rep. 2023, 13, 3048.
  • 62.
    Zhang, H.; Lam, C.S.Y.; Tang, W.C.;et Myopia control effect is influenced by baseline relative peripheral refraction in children wearing defocus incorporated multiple segments (DIMS) spectacle lenses. J. Clin. Med. 2022, 11, 2294.
  • 63.
    Li, S.M.; Li, S.Y.; Liu, L.R.;et Peripheral refraction in 7- and 14-year-old children in central China: The anyang childhood eye study. Br. J. Ophthalmol. 2015, 99, 674–679.
  • 64.
    Mathur, A.; Atchison, D.A.Peripheral refraction patterns out to large field Optom. Vis. Sci. 2013, 90, 140–147.
  • 65.
    Sng, C.C.; Lin, X.Y.; Gazzard, G.;et Peripheral refraction and refractive error in Singapore Chinese children. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1181–1190.
  • 66.
    Ehsaei, A.; Mallen, E.A.; Chisholm, C.M.;et Cross-sectional sample of peripheral refraction in four meridians in myopes and emmetropes. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7574–7585.
  • 67.
    Kang, P.; Gifford, P.; McNamara, P.;et Peripheral refraction in different ethnicities. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6059.
  • 68.
    Chen, X.; Sankaridurg, P.; Donovan, L.;et Characteristics of peripheral refractive errors of myopic and non-myopic Chinese eyes. Vision. Res. 2010, 50, 31–35.
  • 69.
    Atchison, D.A.; Pritchard, N.; Schmid, K.L.Peripheral refraction along the horizontal and vertical visual fields in Vision. Res. 2006, 46, 1450–1458.
  • 70.
    Shen, J.; Spors, F.; Egan, D.;et Peripheral refraction and image blur in four meridians in emmetropes and myopes. Clin. Ophthalmol. 2018, 12, 345–358.
  • 71.
    Osuagwu, U.L.; Suheimat, M.; Atchison, D.A.Peripheral aberrations in adult hyperopes, emmetropes and Ophthalmic Physiol. Opt. 2017, 37, 151–159.
  • 72.
    Yelagondula, V.K.; Achanta, D.S.R.; Panigrahi, S.;et Asymmetric peripheral refraction profile in myopes along the horizontal meridian. Optom. Vis. Sci. 2022, 99, 350–357.
  • 73.
    Atchison, D.A.; Jones, C.E.; Schmid, K.L.;et Eye shape in emmetropia and myopia. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3380–3386.
  • 74.
    Xi, X.; Hao, J.; Lin, Z.;et Two-dimensional peripheral refraction in adults. Biomed. Opt. Express 2023, 14, 2375–2385.
  • 75.
    Wang, S.; Lin, Z.; Xi, X.;et Two-dimensional, high-resolution peripheral refraction in adults with isomyopia and anisomyopia. Investig. Ophthalmol. Vis. Sci. 2020, 61, 16.
  • 76.
    Lin, Z.; Duarte-Toledo, R.; Manzanera, S.;et Two-dimensional peripheral refraction and retinal image quality in orthokeratology lens wearers. Biomed. Opt. Express 2020, 11, 3523–3533.
  • 77.
    Xue, M.; Lin, Z.; Wu, H.;et Two-dimensional peripheral refraction and higher-order wavefront aberrations induced by orthokeratology lenses decentration. Transl. Vis. Sci. Technol. 2023, 12, 8.
  • 78.
    Tse, D.Y.; To, C.H.Graded competing regional myopic and hyperopic defocus produce summated emmetropization set points in Investig. Ophthalmol. Vis. Sci. 2011, 52, 8056–8062.
  • 79.
    Smith,L., 3rd; Hung, L.F.; Huang, J.; et al. Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3864–3873.
  • 80.
    Arumugam, B.; Hung, L.F.; To, C.H.;et The effects of the relative strength of simultaneous competing defocus signals on emmetropization in infant rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3949–3960.
  • 81.
    Tse, D.Y.; Lam, C.S.; Guggenheim, J.A.;et Simultaneous defocus integration during refractive development. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5352–5359.
  • 82.
    Bowrey, H.E.; Zeng, G.; Dennis, Y.T.;et The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2705–2714.
  • 83.
    Lam, C.S.; Tang, W.C.; Lee, P.H.;et Myopia control effect of defocus incorporated multiple segments (DIMS) spectacle lens in Chinese children: Results of a 3-year follow-up study. Br. J. Ophthalmol. 2022, 106, 1110–1114.
  • 84.
    Sankaridurg, P.; Bakaraju, R.C.; Naduvilath, T.;et Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial. Ophthalmic Physiol. Opt. 2019, 39, 294–307.
  • 85.
    Li, X.; Huang, Y.; Zhang, J.;et Treatment zone decentration promotes retinal reshaping in Chinese myopic children wearing orthokeratology lenses. Ophthalmic Physiol. Opt. 2022, 42, 1124–1132.
  • 86.
    Wang, A.; Yang, C.Influence of overnight orthokeratology lens treatment zone decentration on myopia J. Ophthalmol. 2019, 2019, 2596953.
  • 87.
    Sun, L.; Li, Z.-X.; Chen, Y.;et The effect of orthokeratology treatment zone decentration on myopia progression. BMC Ophthal 2022, 22, 76.
  • 88.
    Hartwig, A.; Charman, W.N.; Radhakrishnan, H.Baseline peripheral refractive error and changes in axial refraction during one year in a young adult J. Optom. 2016, 9, 32–39.
  • 89.
    Atchison, D.A.; Li, S.M.; Li, H.;et Relative peripheral hyperopia does not predict development and progression of myopia in children. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6162–6170.
  • 90.
    Rotolo, M.; Montani, G.; Martin, R.Myopia onset and role of peripheral Clin. Optom. 2017, 9, 105–111.
  • 91.
    Mutti, D.O.; Hayes, J.R.; Mitchell, G.L.;et Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2510–2519.
  • 92.
    Mutti, D.O.; Sinnott, L.T.; Berntsen, D.A.;et The effect of multifocal soft contact lens wear on axial and peripheral eye elongation in the BLINK study. Investig. Ophthalmol. Vis. Sci. 2022, 63, 17.
  • 93.
    Swiatczak, B.; Schaeffel, F.Emmetropic, but not myopic human eyes distinguish positive defocus from calculated Investig. Ophthalmol. Vis. Sci. 2021, 62, 14.
  • 94.
    Rosén, R.; Lundström, L.; Unsbo, P.Sign-dependent sensitivity to peripheral defocus for myopes due to Investig. Ophthalmol. Vis. Sci. 2012, 53, 7176.
  • 95.
    Gupta, S.K.; Chakraborty, R.; Verkicharla, P.K.Association between relative peripheral refraction and corresponding electro-retinal Ophthalmic Physiol. Opt. 2023, 43, 482–493.
  • 96.
    Chin, M.P.; Chu, P.H.W.; Cheong, A.M.Y.;et Human electroretinal responses to grating patterns and defocus changes by global flash multifocal electroretinogram. PLoS ONE 2015, 10, e0123480.
  • 97.
    Ho, W.C.; Wong, O.Y.; Chan, Y.C.;et Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye. Vision. Res. 2012, 52, 47–53.
  • 98.
    Zheleznyak, L.; Liu, C.; Winter, S.Chromatic cues for the sign of defocus in the peripheral Biomed. Opt. Express 2024, 15, 5098–5114.
  • 99.
    Zheleznyak, L.Peripheral optical anisotropy in refractive error Ophthalmic Physiol. Opt. 2023, 43, 435–444.
  • 100.
    Jaeken, B.; Artal, P.Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular Investig. Ophthalmol. Vis. Sci. 2012, 53, 3405–3413.
  • 101.
    Spitschan, M.Melanopsin contributions to non-visual and visual Curr. Opin. Behav. Sci. 2019, 30, 67–72.
  • 102.
    Berson, D.M.; Dunn, F.A.; Takao, M.Phototransduction by retinal ganglion cells that set the circadian Science 2002, 295, 1070–1073.
  • 103.
    Stockman, A.; Sharpe, L.T.The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known Vision. Res. 2000, 40, 1711–1737.
  • 104.
    Bowmaker, J.K.; Dartnall, H.J.Visual pigments of rods and cones in a human J. Physiol. 1980, 298, 501–511.
  • 105.
    Kendrick, C.D.; Pusti, D.; Yoon, G.Polychromatic and monochromatic peripheral optical blur orientation in Investig. Ophthalmol. Vis. Sci. 2024, 65, 2716.
  • 106.
    Schaeffel, F.; Swiatczak, B.Mechanisms of emmetropization and what might go wrong in Vision. Res. 2024, 220, 108402.
  • 107.
    Pusti, D.; Patel, N.B.; Ostrin, L.A.;et Peripheral choroidal response to localized defocus blur: Influence of native peripheral aberrations. Investig. Ophthalmol. Vis. Sci. 2024, 65, 14.
  • 108.
    McBrien, N.A.; Millodot, M.The effect of refractive error on the accommodative response Ophthalmic Physiol. Opt. 1986, 6, 145–149.
  • 109.
    Maddock, R.J.; Millodot, M.; Leat, S.;et Accommodation responses and refractive error. Invest Ophthalmol Vis Sci 1981, 20, 387–391.
  • 110.
    Ding, C.; Chen, Y.; Li, X.;et The associations of accommodation and aberrations in myopia control with orthokeratology. Ophthalmic Physiol. Opt. 2022, 42, 327–334.
  • 111.
    Cheng, X.; Xu, J.; Brennan, N.A.Accommodation and its role in myopia progression and control with soft contact Ophthalmic Physiol. Opt. 2019, 39, 162–171.
  • 112.
    Mutti, D.O.; Mitchell, G.L.; Hayes, J.R.;et Accommodative lag before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 2006, 47, 837–846.
  • 113.
    Weizhong, L.; Zhikuan, Y.; Wen, L.;et A longitudinal study on the relationship between myopia development and near accommodation lag in myopic children. Ophthalmic Physiol. Opt. 2008, 28, 57–61.
  • 114.
    Lin, Z.; Christaras, D.; Yang, Z.;et Myopia control spectacles modifying peripheral optics do not affect accommodation responses. Investig. Ophthalmol. Vis. Sci. 2024, 65, 2729.
  • 115.
    Logan, N.S.; Radhakrishnan, H.; Cruickshank, F.E.;et IMI Accommodation and binocular vision in myopia development and progression. Investig. Ophthalmol. Vis. Sci. 2021, 62, 4.
  • 116.
    Troilo, D.;Smith, L. 3rd; Nickla, D.L.; et al. IMI-Report on experimental models of emmetropization and myopia. Investig. Ophthalmol. Vis. Sci. 2019, 60, M31–M88.
  • 117.
    Hankins, M.W.; Peirson, S.N.; Foster, R.G.Melanopsin: An exciting Trends Neurosci. 2008, 31, 27–36.
  • 118.
    Dacey, D.M.; Liao, H.W.; Peterson, B.B.;et Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 2005, 433, 749–754.
  • 119.
    Jiang, X.; Pardue, M.T.; Mori, K.;et Violet light suppresses lens-induced myopia via neuropsin (OPN5) in mice. Proc. Natl. Acad. Sci. USA 2021, 118, e2018840118.
  • 120.
    Khanal, S.; Turnbull, P.R.K.; Lee, N.;et The effect of atropine on human global flash mfERG responses to retinal defocus. Investig. Ophthalmol. Vis. Sci. 2019, 60, 218–225.
Share this article:
How to Cite
Lin, Z.; Lan, W.; Yang, Z.; Artal, P. A Review of Peripheral Refraction in Myopia Research. Journal of Bio-optics 2025, 1 (1), 3. https://doi.org/10.53941/jbiop.2025.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.