- 1.
Jonas,B.; Ang, M.; Cho, P.; et al. IMI Prevention of myopia and its progression. Investig. Ophthalmol. Vis. Sci. 2021, 62, 6.
- 2.
Resnikoff,; Jonas, J.B.; Friedman, D.; et al. Myopia—A 21st century public health issue. Investig. Ophthalmol. Vis. Sci. 2019, 60, Mi–Mii.
- 3.
Holden,A.; Fricke, T.R.; Wilson, D.A.; et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042.
- 4.
WHsu,; Cheng, C.Y.; Liu, J.H.; et al. Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan: The Shihpai Eye Study. Ophthalmology 2004, 111, 62–69.
- 5.
Xu,; Wang, Y.; Li, Y.; et al. Causes of blindness and visual impairment in urban and rural areas in Beijing: The Beijing Eye Study. Ophthalmology 2006, 113, 1134.e1–1134.e11.
- 6.
TFricke,; Jong, M.; Naidoo, K.S.; et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: Systematic review, meta-analysis and modelling. Br. J. Ophthalmol. 2018, 102, 855–862.
- 7.
Morgan, I.G.; French, A.N.; Ashby, R.S.;et The epidemics of myopia: Aetiology and prevention. Prog. Retin. Eye Res. 2018, 62, 134–149.
- 8.
Smith, T.S.; Frick, K.D.; Holden, B.A.;et Potential lost productivity resulting from the global burden of uncorrected refractive error. Bull. World Health Organ. 2009, 87, 431–437.
- 9.
Provis, J.M.; Dubis, A.M.; Maddess, T.;et Adaptation of the central retina for high acuity vision: Cones, the fovea and the avascular zone. Prog. Retin. Eye Res. 2013, 35, 63–81.
- 10.
Labhishetty, V.; Cholewiak, S.A.; Banks, M.S.Contributions of foveal and non-foveal retina to the human eye’s focusing J. Vis. 2019, 19, 18.
- 11.
Wandell, B.A.Foundations of Vision; Sinauer Associates: Sunderland, UK,
- 12.
Smith, E.L., III;Arumugam, B.; Hung, L.F.; et Eccentricity-dependent effects of simultaneous competing defocus on emmetropization in infant rhesus monkeys. Vision. Res. 2020, 177, 32–40.
- 13.
Flitcroft, D.I.The complex interactions of retinal, optical and environmental factors in myopia Prog. Retin. Eye Res. 2012, 31, 622–660.
- 14.
Young, T.The Bakerian On the mechanism of the eye. In Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London; The Royal Society: London, UK, 1832, pp. 35–39.
- 15.
Rempt, J.H.F.; Hoogenboom, W.P.H.Peripheral retinoscopy and the Ophthalmologia 1971, 162, 1–10.
- 16.
Hoogerheide, F.R.J.; Hoogenboom, W.P.H.Acquired myopia in young Ophthalmologia 1971, 163, 209–215.
- 17.
Jaeken, B.; Lundström, L.; Artal, P.Fast scanning peripheral wave-front sensor for the human eye. Opt. Soc. Am. 2011, 19, 7903–7913.
- 18.
Jaeken, J.T.B.; Schaeffel, F.; Artal, P.Comparison of two scanning instruments to measure peripheral refraction in the human J. Opt. Soc. Am. A 2011, 29, 258–264.
- 19.
Bakaraju, R.C.; Fedtke, C.; Ehrmann, K.;et Peripheral refraction and higher-order aberrations with cycloplegia and fogging lenses using the BHVI-EyeMapper. J. Optom. 2016, 9, 5–12.
- 20.
Lu, W.; Ji, R.; Ding, W.;et Agreement and repeatability of central and peripheral refraction by one novel multispectral-based refractor. Front. Med. 2021, 8, 777685.
- 21.
Sager, S.; Vicente-Jaen, A.; Lin, Z.;et Ultra-wide-angle peripheral refraction using a laser-scanning instrument. Biomed. Opt. Express 2024, 15, 6486–6498.
- 22.
Fernandez, E.J.; Sager, S.; Lin, Z.;et Instrument for fast whole-field peripheral refraction in the human eye. Biomed. Opt. Express 2022, 13, 2947–2959.
- 23.
Sheppard, A.L.; Davies, L.N.Clinical evaluation of the Grand Seiko Auto Ref/Keratometer WAM-5500. Ophthalmic Physiol. Opt. 2010, 30, 143–151.
- 24.
Lan, W.; Lin, Z.; Yang, Z.;et Two-dimensional peripheral refraction and retinal image quality in emmetropic children. Sci. Rep. 2019, 9, 16203.
- 25.
Lin, Z.; Xi, X.; Wen, L.;et Relative myopic defocus in the superior retina as an indicator of myopia development in children. Investig. Ophthalmol. Vis. Sci. 2023, 64, 16.
- 26.
Schaeffel, F.; Hagel, G.; Eikermann, J.;et Lower-field myopia and astigmatism in amphibians and chickens. J. Opt. Soc. Am. A 1994, 11, 487–495.
- 27.
Hodos, W.; Erichsen, J.T.Lower-field myopia in birds: An adaptation that keeps the ground in Vision. Res. 1990, 30, 653–657.
- 28.
Fitzke, F.W.; Hayes, B.P.; Hodos, W.;et Refractive sectors in the visual field of the pigeon eye. J. Physiol. 1985, 369, 33–44.
- 29.
Choi, K.Y.; Mok, A.Y.; Do, C.W.;et The diversified defocus profile of the near-work environment and myopia development. Ophthalmic Physiol. Opt. 2020, 40, 463–471.
- 30.
Choi, K.Y.; Chan, H.H.Extrinsic and intrinsic factors regulating juvenile refractive development and eye Investig. Ophthalmol. Vis. Sci. 2021, 62, 21.
- 31.
Gibaldi, A.; Harb, E.N.; Wildsoet, C.F.;et A child-friendly wearable device for quantifying environmental risk factors for myopia. Transl. Vis. Sci. Technol. 2024, 13, 28.
- 32.
Read, S.A.; Alonso-Caneiro, D.; Hoseini-Yazdi, H.;et Objective measures of gaze behaviors and the visual environment during near-work tasks in young adult myopes and emmetropes. Transl. Vis. Sci. Technol. 2023, 12, 18.
- 33.
Lam, C.S.Y.; Tang, W.C.; Tse, D.Y.;et Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: A 2-year randomised clinical trial. Br. J. Ophthalmol. 2020, 104, 363–368.
- 34.
Bao, J.; Huang, Y.; Li, X.;et Spectacle lenses with aspherical lenslets for myopia control vs single-vision spectacle lenses: A randomized clinical trial. JAMA Ophthalmol. 2022, 140, 472–478.
- 35.
Alvarez-Peregrina, C.; Sanchez-Tena, M.A.; Martinez-Perez, C.;et Clinical Evaluation of MyoCare in Europe (CEME): Study protocol for a prospective, multicenter, randomized, double-blinded, and controlled clinical trial. Trials 2023, 24, 674.
- 36.
Gantes-Nuñez, J.; Jaskulski, M.; López-Gil, N.;et Optical characterisation of two novel myopia control spectacle lenses. Ophthalmic Physiol. Opt. 2023, 43, 388–401.
- 37.
Jaskulski, M.; Singh, N.K.; Bradley, A.;et Optical and imaging properties of a novel multi-segment spectacle lens designed to slow myopia progression. Ophthalmic Physiol. Opt. 2020, 40, 549–556.
- 38.
Arias, A.; Ohlendorf, A.; Artal, P.;et In-depth optical characterization of spectacle lenses for myopia progression management. Optica 2023, 10, 594–603.
- 39.
Papadogiannis, P.; Börjeson, C.; Lundström, L.Comparison of optical myopia control interventions: Effect on peripheral image quality and Biomed. Opt. Express 2023, 14, 3125–3137.
- 40.
Rosén, R.; Lundström, L.; Unsbo, P.;et Have we misinterpreted the study of Hoogerheide et al. (1971)? Optom. Vis. Sci. 2012, 89, 1235–1237.
- 41.
Schaeffel, F.; Glasser, A.; Howland, H.C.Accommodation, refractive error and eye growth in Vision. Res. 1988, 28, 639–657.
- 42.
Irving, E.L.; Sivak, J.G.; Callender, M.G.Refractive plasticity of the developing chick Ophthalmic Physiol. Opt. 1992, 12, 448–456.
- 43.
Irving, E.L.; Callender, M.G.; Sivak, J.G.Inducing ametropias in hatchling chicks by defocus—Aperture effects and cylindrical Vision. Res. 1995, 35, 1165–1174.
- 44.
Diether, S.; Schaeffel, F.Local changes in eye growth induced by imposed local refractive error despite active accommodation. Vision. Res. 1997, 37, 659–668.
- 45.
Smith,L., 3rd; Hung, L.F. The role of optical defocus in regulating refractive development in infant monkeys. Vision. Res. 1999, 39, 1415–1435.
- 46.
Smith,L., 3rd; Hung, L.F.; Huang, J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision. Res. 2009, 49, 2386–2392.
- 47.
Smith,L., 3rd; Ramamirtham, R.; Qiao-Grider, Y.; et al. Effects of foveal ablation on emmetropization and form-deprivation myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3914–3922.
- 48.
Kanda, H.; Oshika, T.; Hiraoka, T.;et Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: A 2-year multicenter randomized controlled trial. Jpn. J. Ophthalmol. 2018, 62, 537–543.
- 49.
Kratzer, T.(New) Approaches to reduce progression of myopia with spectacles from Carl Zeiss Acta Ophthalmol. 2012, 90.
- 50.
Cheng, D.; Woo, G.C.; Schmid, K.L.Bifocal lens control of myopic progression in Clin. Exp. Optom. 2011, 94, 24–32.
- 51.
Varnas, S.; Gu, X.; Metcalfe, A.Bayesian meta-analysis of myopia control with multifocal J. Clin. Med. 2021, 10.
- 52.
Atchison, D.A.; Charman, W.N.Optics of spectacle lenses intended to treat myopia Optom. Vis. Sci. 2024, 101, 238–249.
- 53.
Lam, C.S.; Tang, W.C.; Tse, D.Y.;et Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: A 2-year randomised clinical trial. Br. J. Ophthalmol. 2014, 98, 40–45.
- 54.
Lam, C.S.Y.; Tang, W.C.; Zhang, H.Y.;et Long-term myopia control effect and safety in children wearing DIMS spectacle lenses for 6 years. Sci. Rep. 2023, 13, 5475.
- 55.
Lam, C.S.Y.; Tang, W.C.; Qi, H.;et Effect of defocus incorporated multiple segments spectacle lens wear on visual function in myopic Chinese children. Transl. Vis. Sci. Technol. 2020, 9, 11.
- 56.
Lu, Y.; Lin, Z.; Wen, L.;et The adaptation and acceptance of defocus incorporated multiple segment lens for Chinese children. Am. J. Ophthalmol. 2020, 211, 207–216.
- 57.
Bao, J.; Yang, A.; Huang, Y.;et One-year myopia control efficacy of spectacle lenses with aspherical lenslets. Br. J. Ophthalmol. 2022, 106, 1171–1176.
- 58.
Liu, X.; Wang, P.; Xie, Z.;et One-year myopia control efficacy of cylindrical annular refractive element spectacle lenses. Acta Ophthalmol. 2023, 101, 651–657.
- 59.
Brennan, N.A.; Toubouti, Y.M.; Cheng, X.;et Efficacy in myopia control. Prog. Retin. Eye Res. 2021, 83, 100923.
- 60.
Liu, J.; Lu, Y.; Huang, D.;et The efficacy of defocus incorporated multiple segments lenses in slowing myopia progression: Results from diverse clinical circumstances. Ophthalmology 2023, 130, 542–550.
- 61.
Guo, H.; Li, X.; Zhang, X.;et Comparing the effects of highly aspherical lenslets versus defocus incorporated multiple segment spectacle lenses on myopia control. Sci. Rep. 2023, 13, 3048.
- 62.
Zhang, H.; Lam, C.S.Y.; Tang, W.C.;et Myopia control effect is influenced by baseline relative peripheral refraction in children wearing defocus incorporated multiple segments (DIMS) spectacle lenses. J. Clin. Med. 2022, 11, 2294.
- 63.
Li, S.M.; Li, S.Y.; Liu, L.R.;et Peripheral refraction in 7- and 14-year-old children in central China: The anyang childhood eye study. Br. J. Ophthalmol. 2015, 99, 674–679.
- 64.
Mathur, A.; Atchison, D.A.Peripheral refraction patterns out to large field Optom. Vis. Sci. 2013, 90, 140–147.
- 65.
Sng, C.C.; Lin, X.Y.; Gazzard, G.;et Peripheral refraction and refractive error in Singapore Chinese children. Investig. Ophthalmol. Vis. Sci. 2011, 52, 1181–1190.
- 66.
Ehsaei, A.; Mallen, E.A.; Chisholm, C.M.;et Cross-sectional sample of peripheral refraction in four meridians in myopes and emmetropes. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7574–7585.
- 67.
Kang, P.; Gifford, P.; McNamara, P.;et Peripheral refraction in different ethnicities. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6059.
- 68.
Chen, X.; Sankaridurg, P.; Donovan, L.;et Characteristics of peripheral refractive errors of myopic and non-myopic Chinese eyes. Vision. Res. 2010, 50, 31–35.
- 69.
Atchison, D.A.; Pritchard, N.; Schmid, K.L.Peripheral refraction along the horizontal and vertical visual fields in Vision. Res. 2006, 46, 1450–1458.
- 70.
Shen, J.; Spors, F.; Egan, D.;et Peripheral refraction and image blur in four meridians in emmetropes and myopes. Clin. Ophthalmol. 2018, 12, 345–358.
- 71.
Osuagwu, U.L.; Suheimat, M.; Atchison, D.A.Peripheral aberrations in adult hyperopes, emmetropes and Ophthalmic Physiol. Opt. 2017, 37, 151–159.
- 72.
Yelagondula, V.K.; Achanta, D.S.R.; Panigrahi, S.;et Asymmetric peripheral refraction profile in myopes along the horizontal meridian. Optom. Vis. Sci. 2022, 99, 350–357.
- 73.
Atchison, D.A.; Jones, C.E.; Schmid, K.L.;et Eye shape in emmetropia and myopia. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3380–3386.
- 74.
Xi, X.; Hao, J.; Lin, Z.;et Two-dimensional peripheral refraction in adults. Biomed. Opt. Express 2023, 14, 2375–2385.
- 75.
Wang, S.; Lin, Z.; Xi, X.;et Two-dimensional, high-resolution peripheral refraction in adults with isomyopia and anisomyopia. Investig. Ophthalmol. Vis. Sci. 2020, 61, 16.
- 76.
Lin, Z.; Duarte-Toledo, R.; Manzanera, S.;et Two-dimensional peripheral refraction and retinal image quality in orthokeratology lens wearers. Biomed. Opt. Express 2020, 11, 3523–3533.
- 77.
Xue, M.; Lin, Z.; Wu, H.;et Two-dimensional peripheral refraction and higher-order wavefront aberrations induced by orthokeratology lenses decentration. Transl. Vis. Sci. Technol. 2023, 12, 8.
- 78.
Tse, D.Y.; To, C.H.Graded competing regional myopic and hyperopic defocus produce summated emmetropization set points in Investig. Ophthalmol. Vis. Sci. 2011, 52, 8056–8062.
- 79.
Smith,L., 3rd; Hung, L.F.; Huang, J.; et al. Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3864–3873.
- 80.
Arumugam, B.; Hung, L.F.; To, C.H.;et The effects of the relative strength of simultaneous competing defocus signals on emmetropization in infant rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3949–3960.
- 81.
Tse, D.Y.; Lam, C.S.; Guggenheim, J.A.;et Simultaneous defocus integration during refractive development. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5352–5359.
- 82.
Bowrey, H.E.; Zeng, G.; Dennis, Y.T.;et The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the guinea pig. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2705–2714.
- 83.
Lam, C.S.; Tang, W.C.; Lee, P.H.;et Myopia control effect of defocus incorporated multiple segments (DIMS) spectacle lens in Chinese children: Results of a 3-year follow-up study. Br. J. Ophthalmol. 2022, 106, 1110–1114.
- 84.
Sankaridurg, P.; Bakaraju, R.C.; Naduvilath, T.;et Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial. Ophthalmic Physiol. Opt. 2019, 39, 294–307.
- 85.
Li, X.; Huang, Y.; Zhang, J.;et Treatment zone decentration promotes retinal reshaping in Chinese myopic children wearing orthokeratology lenses. Ophthalmic Physiol. Opt. 2022, 42, 1124–1132.
- 86.
Wang, A.; Yang, C.Influence of overnight orthokeratology lens treatment zone decentration on myopia J. Ophthalmol. 2019, 2019, 2596953.
- 87.
Sun, L.; Li, Z.-X.; Chen, Y.;et The effect of orthokeratology treatment zone decentration on myopia progression. BMC Ophthal 2022, 22, 76.
- 88.
Hartwig, A.; Charman, W.N.; Radhakrishnan, H.Baseline peripheral refractive error and changes in axial refraction during one year in a young adult J. Optom. 2016, 9, 32–39.
- 89.
Atchison, D.A.; Li, S.M.; Li, H.;et Relative peripheral hyperopia does not predict development and progression of myopia in children. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6162–6170.
- 90.
Rotolo, M.; Montani, G.; Martin, R.Myopia onset and role of peripheral Clin. Optom. 2017, 9, 105–111.
- 91.
Mutti, D.O.; Hayes, J.R.; Mitchell, G.L.;et Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2510–2519.
- 92.
Mutti, D.O.; Sinnott, L.T.; Berntsen, D.A.;et The effect of multifocal soft contact lens wear on axial and peripheral eye elongation in the BLINK study. Investig. Ophthalmol. Vis. Sci. 2022, 63, 17.
- 93.
Swiatczak, B.; Schaeffel, F.Emmetropic, but not myopic human eyes distinguish positive defocus from calculated Investig. Ophthalmol. Vis. Sci. 2021, 62, 14.
- 94.
Rosén, R.; Lundström, L.; Unsbo, P.Sign-dependent sensitivity to peripheral defocus for myopes due to Investig. Ophthalmol. Vis. Sci. 2012, 53, 7176.
- 95.
Gupta, S.K.; Chakraborty, R.; Verkicharla, P.K.Association between relative peripheral refraction and corresponding electro-retinal Ophthalmic Physiol. Opt. 2023, 43, 482–493.
- 96.
Chin, M.P.; Chu, P.H.W.; Cheong, A.M.Y.;et Human electroretinal responses to grating patterns and defocus changes by global flash multifocal electroretinogram. PLoS ONE 2015, 10, e0123480.
- 97.
Ho, W.C.; Wong, O.Y.; Chan, Y.C.;et Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye. Vision. Res. 2012, 52, 47–53.
- 98.
Zheleznyak, L.; Liu, C.; Winter, S.Chromatic cues for the sign of defocus in the peripheral Biomed. Opt. Express 2024, 15, 5098–5114.
- 99.
Zheleznyak, L.Peripheral optical anisotropy in refractive error Ophthalmic Physiol. Opt. 2023, 43, 435–444.
- 100.
Jaeken, B.; Artal, P.Optical quality of emmetropic and myopic eyes in the periphery measured with high-angular Investig. Ophthalmol. Vis. Sci. 2012, 53, 3405–3413.
- 101.
Spitschan, M.Melanopsin contributions to non-visual and visual Curr. Opin. Behav. Sci. 2019, 30, 67–72.
- 102.
Berson, D.M.; Dunn, F.A.; Takao, M.Phototransduction by retinal ganglion cells that set the circadian Science 2002, 295, 1070–1073.
- 103.
Stockman, A.; Sharpe, L.T.The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known Vision. Res. 2000, 40, 1711–1737.
- 104.
Bowmaker, J.K.; Dartnall, H.J.Visual pigments of rods and cones in a human J. Physiol. 1980, 298, 501–511.
- 105.
Kendrick, C.D.; Pusti, D.; Yoon, G.Polychromatic and monochromatic peripheral optical blur orientation in Investig. Ophthalmol. Vis. Sci. 2024, 65, 2716.
- 106.
Schaeffel, F.; Swiatczak, B.Mechanisms of emmetropization and what might go wrong in Vision. Res. 2024, 220, 108402.
- 107.
Pusti, D.; Patel, N.B.; Ostrin, L.A.;et Peripheral choroidal response to localized defocus blur: Influence of native peripheral aberrations. Investig. Ophthalmol. Vis. Sci. 2024, 65, 14.
- 108.
McBrien, N.A.; Millodot, M.The effect of refractive error on the accommodative response Ophthalmic Physiol. Opt. 1986, 6, 145–149.
- 109.
Maddock, R.J.; Millodot, M.; Leat, S.;et Accommodation responses and refractive error. Invest Ophthalmol Vis Sci 1981, 20, 387–391.
- 110.
Ding, C.; Chen, Y.; Li, X.;et The associations of accommodation and aberrations in myopia control with orthokeratology. Ophthalmic Physiol. Opt. 2022, 42, 327–334.
- 111.
Cheng, X.; Xu, J.; Brennan, N.A.Accommodation and its role in myopia progression and control with soft contact Ophthalmic Physiol. Opt. 2019, 39, 162–171.
- 112.
Mutti, D.O.; Mitchell, G.L.; Hayes, J.R.;et Accommodative lag before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 2006, 47, 837–846.
- 113.
Weizhong, L.; Zhikuan, Y.; Wen, L.;et A longitudinal study on the relationship between myopia development and near accommodation lag in myopic children. Ophthalmic Physiol. Opt. 2008, 28, 57–61.
- 114.
Lin, Z.; Christaras, D.; Yang, Z.;et Myopia control spectacles modifying peripheral optics do not affect accommodation responses. Investig. Ophthalmol. Vis. Sci. 2024, 65, 2729.
- 115.
Logan, N.S.; Radhakrishnan, H.; Cruickshank, F.E.;et IMI Accommodation and binocular vision in myopia development and progression. Investig. Ophthalmol. Vis. Sci. 2021, 62, 4.
- 116.
Troilo, D.;Smith, L. 3rd; Nickla, D.L.; et al. IMI-Report on experimental models of emmetropization and myopia. Investig. Ophthalmol. Vis. Sci. 2019, 60, M31–M88.
- 117.
Hankins, M.W.; Peirson, S.N.; Foster, R.G.Melanopsin: An exciting Trends Neurosci. 2008, 31, 27–36.
- 118.
Dacey, D.M.; Liao, H.W.; Peterson, B.B.;et Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 2005, 433, 749–754.
- 119.
Jiang, X.; Pardue, M.T.; Mori, K.;et Violet light suppresses lens-induced myopia via neuropsin (OPN5) in mice. Proc. Natl. Acad. Sci. USA 2021, 118, e2018840118.
- 120.
Khanal, S.; Turnbull, P.R.K.; Lee, N.;et The effect of atropine on human global flash mfERG responses to retinal defocus. Investig. Ophthalmol. Vis. Sci. 2019, 60, 218–225.