- 1.
Howland, H.C. Photorefraction of eyes: History and future prospects. Optom. Vis. Sci. 2009, 86, 603–606. https://doi.org/10.1097/OPX.0b013e3181a523c9.
- 2.
Howland, H.C.; Braddick, O.; Atkinson, J.; et al. Optics of photorefraction: Orthogonal and isotropic methods. J. Opt. Soc. Am. 1983, 73, 1701–1708. https://doi.org/10.1364/josa.73.001701.
- 3.
Kaakinen, K. A simple method for screening of children with strabismus, anisometropia or ametropia by simultaneous photography of the corneal and the fundus reflexes. Acta Ophthalmol. 1979, 57, 161–171. https://doi.org/10.1111/j.1755-3768.1979.tb00481.x.
- 4.
Kaakinen, K.; Tommila, V. A clinical study on the detection of strabismus, anisometropia or ametropia of children by simultaneous photography of the corneal and the fundus reflexes. Acta Ophthalmol. 1979, 57, 600–611. https://doi.org/10.1111/j.1755-3768.1979.tb00507.x.
- 5.
Bobier, W.R.; Braddick, O.J. Eccentric photorefraction: Optical analysis and empirical measures. Am. J. Optom. Physiol. Opt. 1985, 62, 614–620.
- 6.
Norcia, A.M.; Zadnik, K.; Day, S.H. Photorefraction with a catadioptric lens. Improvement on the method of Kaakinen. Acta Ophthalmol. 1986, 64, 379–385. https://doi.org/10.1111/j.1755-3768.1986.tb06939.x.
- 7.
Schaeffel, F.; Wilhelm, H.; Zrenner, E. Inter-individual variability in the dynamics of natural accommodation in humans: Relation to age and refractive errors. J. Physiol. 1993, 461, 301–320.
- 8.
Kaur, K.; Gurnani, B. Slit-Lamp Biomicroscope; StatPearls Publishing LLC: St. Petersburg, FL, USA, 2024.
- 9.
Schaeffel, F.; Farkas, L.; Howland, H.C. Infrared photoretinoscope. Appl. Opt. 1987, 26, 1505–1509. https://doi.org/10.1364/AO.26.001505.
- 10.
Bharadwaj, S.R.; Sravani, N.G.; Little, J.A.; et al. Empirical variability in the calibration of slope-based eccentric photorefraction. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2013, 30, 923–931. https://doi.org/10.1364/JOSAA.30.000923.
- 11.
Campbell, M.C.; Bobier, W.R.; Roorda, A. Effect of monochromatic aberrations on photorefractive patterns. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1995, 12, 1637–1646. https://doi.org/10.1364/josaa.12.001637.
- 12.
Roorda, A.; Campbell, M.C.; Bobier, W.R. Slope-based eccentric photorefraction: Theoretical analysis of different light source configurations and effects of ocular aberrations. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 1997, 14, 2547–2556. https://doi.org/10.1364/josaa.14.002547.
- 13.
Wu, Y.; Thibos, L.N.; Candy, T.R. Two-dimensional simulation of eccentric photorefraction images for ametropes: Factors influencing the measurement. Ophthalmic Physiol. Opt. 2018, 38, 432–446. https://doi.org/10.1111/opo.12563.
- 14.
Ferreira, A.; Vieira, R.; Maia, S.; et al. Photoscreening for amblyopia risk factors assessment in young children: A systematic review with meta-analysis. Eur. J. Ophthalmol. 2023, 33, 92–103. https://doi.org/10.1177/11206721221099777.
- 15.
Horwood, A.M.; Griffiths, H.J.; Carlton, J.; et al. Scope and costs of autorefraction and photoscreening for childhood amblyopia-a systematic narrative review in relation to the EUSCREEN project data. Eye 2021, 35, 739–752. https://doi.org/10.1038/s41433-020-01261-8.
- 16.
Silverstein, E.; Donahue, S.P. Preschool Vision Screening: Where We Have Been and Where We Are Going. Am. J. Ophthalmol. 2018, 194, xviii–xxiii. https://doi.org/10.1016/j.ajo.2018.07.022.
- 17.
Bharadwaj, S.R.; Wang, J.; Candy, T.R. Pupil responses to near visual demand during human visual development. J. Vis. 2011, 11, 6. https://doi.org/10.1167/11.4.6.
- 18.
Horwood, A.M.; Riddell, P.M. Developmental changes in the balance of disparity, blur, and looming/proximity cues to drive ocular alignment and focus. Perception 2013, 42, 693–715. https://doi.org/10.1068/p7506.
- 19.
Kasthurirangan, S.; Glasser, A. Age related changes in accommodative dynamics in humans. Vision. Res. 2006, 46, 1507–1519. https://doi.org/10.1016/j.visres.2005.11.012.
- 20.
Toor, S.; Horwood, A.; Riddell, P. The effect of asymmetrical accommodation on anisometropic amblyopia treatment outcomes. J. AAPOS 2019, 23, 203.e1–203.e5. https://doi.org/10.1016/j.jaapos.2019.05.010.
- 21.
Barathi, V.A.; Beuerman, R.W.; Schaeffel, F. Effects of unilateral topical atropine on binocular pupil responses and eye growth in mice. Vision. Res. 2009, 49, 383–387. https://doi.org/10.1016/j.visres.2008.11.005.
- 22.
Bossong, H.; Swann, M.; Glasser, A.; et al. Applicability of infrared photorefraction for measurement of accommodation in awake-behaving normal and strabismic monkeys. Investig. Ophthalmol. Vis. Sci. 2009, 50, 966–973. https://doi.org/10.1167/iovs.08-2686.
- 23.
Feldkaemper, M.P.; Schaeffel, F. Evidence for a potential role of glucagon during eye growth regulation in chicks. Vis. Neurosci. 2002, 19, 755–766. https://doi.org/10.1017/s0952523802196064.
- 24.
Katzir, G.; Howland, H.C. Corneal power and underwater accommodation in great cormorants (Phalacrocorax carbo sinensis). J. Exp. Biol. 2003, 206, 833–841. https://doi.org/10.1242/jeb.00142.
- 25.
Machovsky-Capuska, G.E.; Howland, H.C.; Raubenheimer, D.; et al. Visual accommodation and active pursuit of prey underwater in a plunge-diving bird: The Australasian gannet. Proc. Biol. Sci. 2012, 279, 4118–4125. https://doi.org/10.1098/rspb.2012.1519.
- 26.
Troilo, D.; Howland, H.C.; Judge, S.J. Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus). Vision. Res. 1993, 33, 1301–1310. https://doi.org/10.1016/0042-6989(93)90038-x.
- 27.
Vilupuru, A.S.; Kasthurirangan, S.; Glasser, A. Dynamics of accommodative fatigue in rhesus monkeys and humans. Vision. Res. 2005, 45, 181–191. https://doi.org/10.1016/j.visres.2004.07.036.
- 28.
Duret, A.; Humphries, R.; Ramanujam, S.; et al. The infrared reflex: A potential new method for congenital cataract screening. Eye 2019, 33, 1865–1870. https://doi.org/10.1038/s41433-019-0509-9.
- 29.
Chen, Y.L.; Tan, B.; Baker, K.; et al. Simulation of keratoconus observation in photorefraction. Opt. Express 2006, 14, 11477–11485. https://doi.org/10.1364/oe.14.011477.
- 30.
Patel, A.M.; Kumar, P.; Vaddavalli, P.K.; et al. The Value of Eccentric Infrared Photorefraction in Evaluating Keratoconus. Optom. Vis. Sci. 2022, 99, 763–773. https://doi.org/10.1097/OPX.0000000000001940.
- 31.
Thibos, L.N.; Hong, X.; Bradley, A.; et al. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2002, 19, 2329–2348.
- 32.
Chen, Y.C.; Jiang, C.J.; Yang, T.H.; et al. Development of a human eye model incorporated with intraocular scattering for visual performance assessment. J. Biomed. Opt. 2012, 17, 075009. https://doi.org/10.1117/1.JBO.17.7.075009.
- 33.
Howland, H.C. Optics of photoretinoscopy: Results from ray tracing. Am. J. Optom. Physiol. Opt. 1985, 62, 621–625.
- 34.
Howland, H.C.; Sayles, N. Photokeratometric and photorefractive measurements of astigmatism in infants and young children. Vision. Res. 1985, 25, 73–81. https://doi.org/10.1016/0042-6989(85)90082-3.
- 35.
Sravani, N.G.; Nilagiri, V.K.; Bharadwaj, S.R. Photorefraction estimates of refractive power varies with the ethnic origin of human eyes. Sci. Rep. 2015, 5, 7976. https://doi.org/10.1038/srep07976.
- 36.
Bharadwaj, S.R.; Candy, T.R. Cues for the control of ocular accommodation and vergence during postnatal human development. J. Vis. 2008, 8, 14. https://doi.org/10.1167/8.16.14.
- 37.
Ntodie, M.; Bharadwaj, S.R.; Balaji, S.; et al. Comparison of Three Gaze-position Calibration Techniques in First Purkinje Image-based Eye Trackers. Optom. Vis. Sci. 2019, 96, 587–598. https://doi.org/10.1097/OPX.0000000000001405.
- 38.
Schaeffel, F. Kappa and Hirschberg ratio measured with an automated video gaze tracker. Optom. Vis. Sci. 2002, 79, 329–334. https://doi.org/10.1097/00006324-200205000-00013.
- 39.
Choi, M.; Weiss, S.; Schaeffel, F.; et al. Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor). Optom. Vis. Sci. 2000, 77, 537–548. https://doi.org/10.1097/00006324-200010000-00008.
- 40.
Schaeffel, F.; Mathis, U.; Bruggemann, G. Noncycloplegic photorefractive screening in pre-school children with the “PowerRefractor” in a pediatric practice. Optom. Vis. Sci. 2007, 84, 630–639. https://doi.org/10.1097/OPX.0b013e3180dc99ea.
- 41.
Gabriel, G.M.; Mutti, D.O. Evaluation of infant accommodation using retinoscopy and photoretinoscopy. Optom. Vis. Sci. 2009, 86, 208–215. https://doi.org/10.1097/OPX.0b013e3181960652.
- 42.
Gehring, A.M.; Haensel, J.X.; Curtiss, M.K.; et al. Validation of the PowerRef 3 for Measuring Accommodation: Comparison With the Grand Seiko WAM-5500A Autorefractor. Transl. Vis. Sci. Technol. 2022, 11, 25. https://doi.org/10.1167/tvst.11.10.25.
- 43.
Seidemann, A.; Schaeffel, F. An evaluation of the lag of accommodation using photorefraction. Vision. Res. 2003, 43, 419–430. https://doi.org/10.1016/s0042-6989(02)00571-0.
- 44.
Bharadwaj, S.R.; Candy, T.R. Accommodative and vergence responses to conflicting blur and disparity stimuli during development. J. Vis. 2009, 9, 4. https://doi.org/10.1167/9.11.4.
- 45.
Blade, P.J.; Candy, T.R. Validation of the PowerRefractor for measuring human infant refraction. Optom. Vis. Sci. 2006, 83, 346–353. https://doi.org/10.1097/01.opx.0000221402.35099.fb.
- 46.
Ghahghaei, S.; Reed, O.; Candy, T.R.; et al. Calibration of the PlusOptix PowerRef 3 with change in viewing distance, adult age and refractive error. Ophthalmic Physiol. Opt. 2019, 39, 253–259. https://doi.org/10.1111/opo.12631.
- 47.
Horwood, A.M.; Riddell, P.M. Can misalignments in typical infants be used as a model for infantile esotropia? Investig. Ophthalmol. Vis. Sci. 2004, 45, 714–720. https://doi.org/10.1167/iovs.03-0454.
- 48.
Gekeler, F.; Schaeffel, F.; Howland, H.C.; et al. Measurement of astigmatism by automated infrared photoretinoscopy. Optom. Vis. Sci. 1997, 74, 472–482. https://doi.org/10.1097/00006324-199707000-00013.
- 49.
Bharadwaj, S.R.; Schor, C.M. Acceleration characteristics of human ocular accommodation. Vision. Res. 2005, 45, 17–28. https://doi.org/10.1016/j.visres.2004.07.040.
- 50.
Tondel, G.M.; Candy, T.R. Accommodation and vergence latencies in human infants. Vision. Res. 2008, 48, 564–576. https://doi.org/10.1016/j.visres.2007.11.016.
- 51.
Marran, L.; Schor, C.M. Lens induced aniso-accommodation. Vision. Res. 1998, 38, 3601–3619. https://doi.org/10.1016/s0042-6989(98)00064-9.
- 52.
Sravani, N.G.; Bharadwaj, S.R. Ocular Focusing Behavior of the One-Eyed Child. Optom. Vis. Sci. 2017, 94, 150–158. https://doi.org/10.1097/OPX.0000000000001009.
- 53.
Pophal, C.J.; Trivedi, R.H.; Bowsher, J.D.; et al. Effectiveness of the Spot (tm) Vision Screener With Variations in Ocular Pigments. Am. J. Ophthalmol. 2024, 264, 99–103. https://doi.org/10.1016/j.ajo.2024.03.018.
- 54.
Tabernero, J.; Ohlendorf, A.; Fischer, M.D.; et al. Peripheral refraction profiles in subjects with low foveal refractive errors. Optom. Vis. Sci. 2011, 88, E388–E394. https://doi.org/10.1097/OPX.0b013e31820bb0f5.
- 55.
Tabernero, J.; Schaeffel, F. Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2009, 26, 2206–2210. https://doi.org/10.1364/JOSAA.26.002206.
- 56.
Marshall, J.; Gole, G.A. Unilateral leukocoria in off axis flash photographs of normal eyes. Am. J. Ophthalmol. 2003, 135, 709–711. https://doi.org/10.1016/s0002-9394(02)02079-2.
- 57.
Asensio-Sanchez, V.M.; Diaz-Cabanas, L.; Martin-Prieto, A. Photoleukocoria with smartphone photographs. Int. Med. Case Rep. J. 2018, 11, 117–119. https://doi.org/10.2147/IMCRJ.S163735.
- 58.
Nilagiri, V.K.; Metlapally, S.; Schor, C.M.; et al. A computational analysis of retinal image quality in eyes with keratoconus. Sci. Rep. 2020, 10, 1321. https://doi.org/10.1038/s41598-020-57993-w.
- 59.
Pantanelli, S.; MacRae, S.; Jeong, T.M.; et al. Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor. Ophthalmology 2007, 114, 2013–2021. https://doi.org/10.1016/j.ophtha.2007.01.008.
- 60.
Sarkar, S.; Devi, P.; Vaddavalli, P.K.; et al. Differences in Image Quality after Three Laser Keratorefractive Procedures for Myopia. Optom. Vis. Sci. 2022, 99, 137–149. https://doi.org/10.1097/OPX.0000000000001850.
- 61.
Sarkar, S.; Vaddavalli, P.K.; Bharadwaj, S.R. Image Quality Analysis of Eyes Undergoing LASER Refractive Surgery. PLoS ONE 2016, 11, e0148085. https://doi.org/10.1371/journal.pone.0148085.
- 62.
Devkar, K.; Arunkumar, S.; Bhakta, T.; et al. Explainable XceptionNet-Based Keratoconus Detection Using Infrared Images and Edge Computing. IEEE Sens. Lett. 2024, 9, 6000404, https://doi.org/10.1109/LSENS.2024.3509503.
- 63.
Rabbetts, R.B. Subsidiary effects of correcting lenses; magnifying devices. In Bennett & Rabbetts’ Clinical Visual Optics, 4th ed.; Rabbetts, R.B., Ed.; Butterworth Heinemann: Edinburgh, UK, 2007; pp. 245–274.
- 64.
Bharadwaj, S.R.; Bandela, P.K.; Nilagiri, V.K. Lens magnification affects the estimates of refractive error obtained using eccentric infrared photorefraction. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2018, 35, 908–915. https://doi.org/10.1364/JOSAA.35.000908.
- 65.
Anderson, H.A.; Manny, R.E.; Glasser, A.; et al. Static and dynamic measurements of accommodation in individuals with down syndrome. Investig. Ophthalmol. Vis. Sci. 2011, 52, 310–317.
- 66.
Doyle, L.; Saunders, K.J.; Little, J.A. Trying to see, failing to focus: Near visual impairment in Down syndrome. Sci. Rep. 2016, 6, 20444.
- 67.
Roorda, A.; Bobier, W.R.; Campbell, M.C. An infrared eccentric photo-optometer. Vision. Res. 1998, 38, 1913–1924. https://doi.org/10.1016/s0042-6989(97)00424-0.
- 68.
Chun, J.; Kim, Y.; Shin, K.Y.; et al. Deep Learning-Based Prediction of Refractive Error Using Photorefraction Images Captured by a Smartphone: Model Development and Validation Study. JMIR Med. Inform. 2020, 8, e16225. https://doi.org/10.2196/16225.
- 69.
Kwok, T.C.K.; Shum, N.C.M.; Ngai, G.; et al. Democratizing Optometric Care: A Vision-Based, Data-Driven Approach to Automatic Refractive Error Measurement for Vision Screening. In Proceedings of the IEEE International Symposium on Multimedia (ISM), Miami, FL, USA, 14–16 December 2015; pp. 7–12. https://doi.org/10.1109/ISM.2015.55.
- 70.
Yang, Z.; Fu, E.Y.; Ngai, G.; et al. Screening for refractive error with low-quality smartphone images. In Proceedings of the Proceedings of the 18th International Conference on Advances in Mobile Computing & Multimedia, Chiang Mai Thailand, 30 November–2 December 2020. https://doi.org/10.1145/3428690.3429175.
- 71.
Linde, G.; Chalakkal, R.; Zhou, L.; et al. Automatic Refractive Error Estimation Using Deep Learning-Based Analysis of Red Reflex Images. Diagnostics 2023, 13, 2810. https://doi.org/10.3390/diagnostics13172810.
- 72.
Xu, D.; Ding, S.; Zheng, T.; et al. Deep learning for predicting refractive error from multiple photorefraction images. Biomed. Eng. Online 2022, 21, 55. https://doi.org/10.1186/s12938-022-01025-3.
- 73.
Bharadwaj, S.R.; Ravisankar, C.; Roy, S.; et al. Fluctuations of Steady-State Accommodation Is a Marker for Screening Spasm of Near Reflex. Transl. Vis. Sci. Technol. 2021, 10, 9. https://doi.org/10.1167/tvst.10.11.9.
- 74.
Bharadwaj, S.R.; Roy, S.; Satgunam, P. Spasm of Near Reflex: Objective Assessment of the Near-Triad. Investig. Ophthalmol. Vis. Sci. 2020, 61, 18. https://doi.org/10.1167/iovs.61.8.18.
- 75.
Santodomingo-Rubido, J.; Carracedo, G.; Suzaki, A.; et al. Keratoconus: An updated review. Cont. Lens Anterior Eye 2022, 45, 101559. https://doi.org/10.1016/j.clae.2021.101559.