2509001225
  • Open Access
  • Review

In-Vitro Methods for Comprehensive IOL Optical Performance Assessment

  • Dimitrios Christaras 1, *,   
  • Spyridon Tsoukalas 1,   
  • Alexandros Pennos 1,   
  • Harilaos Ginis 1,   
  • Pablo Artal 2

Received: 19 May 2025 | Revised: 19 Aug 2025 | Accepted: 03 Sep 2025 | Published: 11 Sep 2025

Abstract

This study introduces novel in-vitro methodologies for the optical assessment of intraocular lenses (IOLs), addressing the recognized gap between standard optical bench measurements and actual visual performance as experienced by patients. A model eye is presented that simulates the human eye’s optical properties while allowing controlled measurements across various conditions. The testing framework incorporates three novel approaches: the High Dynamic Range Point Spread Function (HDR-PSF) method, which captures both fine central details and peripheral light scatter by combining multiple exposures, the Optical Integration Method, which quantifies straylight, and the Through-Focus Objective Letter Sharpness metric, which provides a visually relevant assessment of functional vision across different focal distances. Additionally, a systematic approach for evaluating negative dysphotopsia in the peripheral visual field is presented. These methodologies revealed significant differences in optical performance between various IOL designs, including monofocal, extended depth of focus and multifocal. The techniques provide deeper insights into IOL performance than current ISO and ANSI standards allow, offering more clinically relevant evaluations that better predict patient outcomes. This novel in-vitro testing framework represents an advancement in IOL evaluation, opening the way for improved lens design, better patient satisfaction, and more informed clinical decision-making in cataract surgery.

References 

  • 1.
    Apple, D.J.; Sims, J. Harold Ridley and the invention of the intraocular lens. Surv. Ophthalmol. 1996, 40, 279–292.
  • 2.
    Guirao, A.; Redondo, M.; Geraghty, E.; et al. Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted. Arch. Ophthalmol. 2002, 120, 1143–1151.
  • 3.
    Tabernero, J.; Piers, P.; Benito, A.; et al. Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4651–4658.
  • 4.
    Artal, P. History of IOLs that correct spherical aberration. J. Cataract Refract. Surg. 2009, 35, 962–963.
  • 5.
    Rampat, R.; Gatinel, D. Multifocal and extended depth-of-focus intraocular lenses in 2020. Ophthalmology 2021, 128, e164–e185.
  • 6.
    Artal, P.; Ginis, H.; Christaras, D.; et al. Inverted meniscus intraocular lens as a better optical surrogate of the crystalline lens. Biomed. Opt. Express 2023, 14, 2129–2137.
  • 7.
    International Organization for Standardization ISO Central Secretariat. International Standard ISO 11979-2: Ophthalmic Implants—Intraocular Lenses, Part 2: Optical Properties and Testing Procedures; ISO: Geneva, Switzerland, 2014.
  • 8.
    American National Standards Institute. ANSI Z80.35-2018: Ophthalmics—Extended Depth of Focus Intraocular Lenses; American National Standards Institute: Washington, DC, USA, 2018.
  • 9.
    Ginis, H.S.; Tsoukalas, S.; Christaras, D.; et al. Visually relevant on-bench through-focus analysis of intraocular lenses. Biomed. Opt. Express 2024, 15, 7056–7065.
  • 10.
    Alarcon, A.; Canovas, C.; Rosen, R.; et al. Preclinical metrics to predict through-focus visual acuity for pseudophakic patients. Biomed. Opt. Express 2016, 7, 1877–1888.
  • 11.
    Arias, A.; Ginis, H.; Artal, P. Straylight in different types of intraocular lenses. Transl. Vis. Sci. Technol. 2020, 9, 16.
  • 12.
    Ravikumar, A.; Marsack, J.D.; Bedell, H.E.; et al. Change in visual acuity is well correlated with change in image-quality metrics for both normal and keratoconic wavefront errors. J. Vis. 2013, 13, 28.
  • 13.
    Ginis, H.; Pérez, G.M.; Bueno, J.M.; et al. The wide-angle point spread function of the human eye reconstructed by a new optical method. J. Vis. 2012, 12, 20.
  • 14.
    van den Berg, T.J.; Franssen, L.; Coppens, J.E. Straylight in the human eye: Testing objectivity and optical character of the psychophysical measurement. Ophthalmic Physiol. Opt. 2010, 30, 345–350.
  • 15.
    Ginis, H.; Perez, G.M.; Bueno, J.M.; et al. Wavelength dependence of the ocular straylight. Investog. Ophthalmol. Vis. Sci. 2013, 54, 3702–3708.
  • 16.
    Christaras, D.; Ginis, H.; Pennos, A.; et al. Scattering contribution to the double-pass PSF using Monte Carlo simulations. Ophthalmic Physiol. Opt. 2017, 37, 342–346.
  • 17.
    Christaras, D.; Rozema, J.J.; Ginis, H. Ocular axial length and straylight. Ophthalmic Physiol. Opt. 2023, 40, 316–322.
  • 18.
    Stidwill, D.; Fletcher, R. Normal Binocular Vision: Theory, Investigation and Practical Aspects, 1st ed.; Blackwell Publishing: Hoboken, NJ, USA, 2011.
  • 19.
    Radhakrishnan, A.; Dorronsoro, C.; Sawides, L.; et al. A cyclopean neural mechanism compensating for optical differences between the eyes. Curr. Biol. 2015, 25, 188–189.
  • 20.
    Evans, B.J.W. Monovision: A review. Ophthalmic Physiol. Opt. 2007, 27, 417–439.
  • 21.
    Kim, B.; Son, H.S.; Khoramnia, R.; et al. Comparison of clinical outcomes between different combinations of hybrid multifocal, extended-depth-of-focus and enhanced monofocal intraocular lenses. Br. J. Ophthalmol. 2025, 109, 565–571.
  • 22.
    Park, D.Y.; Lim, D.H.; Chung, T.Y.; et al. Intraocular lens power calculations in a patient with posterior keratoconus. Cornea 2013, 32, 708–711.
  • 23.
    Zhang, M.; Qian, D.; Jing, Q.; et al. Analysis of Corneal Spherical Aberrations in Cataract Patients with High Myopia. Sci. Rep. 2019, 9, 1420.
  • 24.
    Yoo, Y.S.; Kang, M.C.; Park, J.; et al. Factors affecting prediction error after cataract surgery with implantation of various multifocal IOLs in patients with previous refractive laser surgery. Ann. Transl. Med. 2021, 9, 1720.
  • 25.
    Zhang, L.; Lin, D.; Wang, Y.; et al. Comparison of Visual Neuroadaptations After Multifocal and Monofocal Intraocular Lens Implantation. Front. Neurosci. 2021, 15, 648863.
Share this article:
How to Cite
Christaras, D.; Tsoukalas, S.; Pennos, A.; Ginis, H.; Artal, P. In-Vitro Methods for Comprehensive IOL Optical Performance Assessment. Journal of Bio-optics 2025, 1 (1), 5. https://doi.org/10.53941/jbiop.2025.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.