- 1.
Robert, W.A. The Biology of Cancer, 3rd ed.; Multi-Step Tumorigenesis; W. W. Norton & Company: New York, NY, USA, 2023; pp. 467–469.
- 2.
Harguindey, S.; Orive, G.; Luis Pedraz, J.; et al. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin--one single nature. Biochim. Biophys. Acta 2005, 1756, 1–24. https://doi.org/10.1016/j.bbcan.2005.06.004.
- 3.
Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab. 2010, 7, 7. https://doi.org/10.1186/1743-7075-7-7.
- 4.
Harguindey, S.; Pedraz, J.L.; García Cañero, R.; et al. Hydrogen ion-dependent oncogenesis and parallel new avenues to cancer prevention and treatment using a H(+)-mediated unifying approach: pH-related and pH-unrelated mechanisms. Crit. Rev. Oncog. 1995, 6, 1–33. https://doi.org/10.1615/critrevoncog.v6.i1.20.
- 5.
Perona, R.; Serrano, R. Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump. Nature 1988, 334, 438–440. https://doi.org/10.1038/334438a0.
- 6.
Reshkin, S.J.; Bellizzi, A.; Caldeira, S.; et al. Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J. 2000, 14, 2185–2197. https://doi.org/10.1096/fj.00-0029com.
- 7.
DiGiammarino, E.L.; Lee, A.S.; Cadwell, C.; et al. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat. Struct. Biol. 2002, 9, 12–16. https://doi.org/10.1038/nsb730.
- 8.
Pouysségur, J. The growth factor-activatable Na+/H+ exchange system: A genetic approach. Trends Biochem. Sci. 1985, 10, 453–455.
- 9.
Prigogine, I. Time, structure, and fluctuations. Science 1978, 201, 777–785. https://doi.org/10.1126/science.201.4358.777.
- 10.
Webb, S.D.; Sherratt, J.A.; Fish, R.G. Mathematical modelling of tumour acidity: Regulation of intracellular pH. J. Theor. Biol. 1999, 196, 237–250. https://doi.org/10.1006/jtbi.1998.0836.
- 11.
Cardone, R.A.; Casavola, V.; Reshkin, S.J. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat. Rev. Cancer 2005, 5, 786–795. https://doi.org/10.1038/nrc1713.
- 12.
Hamaguchi, R.; Isowa, M.; Narui, R.; et al. How Does Cancer Occur? How Should It Be Treated? Treatment from the Perspective of Alkalization Therapy Based on Science-Based Medicine. Biomedicines 2024, 12, 2197. https://doi.org/10.3390/biomedicines12102197.
- 13.
Robey, I.; López, A.M.; Roe, D. Safety and Tolerability of Long-Term Sodium Bicarbonate Consumption in Cancer Care. J. Integr. Oncol. J. Integr. Oncol. 2015, 4, 10–4172. https://doi.org/10.4172/2329-6771.1000128.
- 14.
Jazwinski, S.M.; Kriete, A. The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front. Physiol. 2012, 3, 139. https://doi.org/10.3389/fphys.2012.00139.
- 15.
Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. https://doi.org/10.1016/s1097-2765(04)00179-0.
- 16.
Jazwinski, S.M. The retrograde response: A conserved compensatory reaction to damage from within and from without. Prog. Mol. Biol. Transl. Sci. 2014, 127, 133–154. https://doi.org/10.1016/b978-0-12-394625-6.00005-2.
- 17.
Jazwinski, S.M. The retrograde response: When mitochondrial quality control is not enough. Biochim. Biophys. Acta 2013, 1833, 400–409. https://doi.org/10.1016/j.bbamcr.2012.02.010.
- 18.
Vaupel, P.; Multhoff, G. Revisiting the Warburg effect: Historical dogma versus current understanding. J. Physiol. 2021, 599, 1745–1757. https://doi.org/10.1113/jp278810.
- 19.
Isowa, M.; Hamaguchi, R.; Narui, R.; et al. Potential of Alkalization Therapy for the Management of Metastatic Pancreatic Cancer: A Retrospective Study. Cancers 2023, 16, 61. https://doi.org/10.3390/cancers16010061.
- 20.
Isowa, M.; Hamaguchi, R.; Narui, R.; et al. Effects of alkalization therapy on hepatocellular carcinoma: A retrospective study. Front. Oncol. 2023, 13, 1179049. https://doi.org/10.3389/fonc.2023.1179049.
- 21.
Hamaguchi, R.; Narui, R.; Morikawa, H.; et al. Improved Chemotherapy Outcomes of Patients With Small-cell Lung Cancer Treated With Combined Alkalization Therapy and Intravenous Vitamin C. Cancer Diagn. Progn. 2021, 1, 157–163. https://doi.org/10.21873/cdp.10021.
- 22.
Hamaguchi, R.; Narui, R.; Wada, H. Effects of Alkalization Therapy on Chemotherapy Outcomes in Metastatic or Recurrent Pancreatic Cancer. Anticancer. Res. 2020, 40, 873–880. https://doi.org/10.21873/anticanres.14020.
- 23.
Hamaguchi, R.; Ito, T.; Narui, R.; et al. Effects of Alkalization Therapy on Chemotherapy Outcomes in Advanced Pancreatic Cancer: A Retrospective Case-Control Study. In Vivo 2020, 34, 2623–2629. https://doi.org/10.21873/invivo.12080.
- 24.
Hamaguchi, R.; Narui, R.; Wada, H. Effects of an Alkalization Therapy on Nivolumab in Esophago-gastric Junction Adenocarcinoma: A Case Report. Clin. Oncol. 2019, 2, 1–4.
- 25.
Hamaguchi, R.; Okamoto, T.; Sato, M.; et al. Effects of an Alkaline Diet on EGFR-TKI Therapy in EGFR Mutation-positive NSCLC. Anticancer Res. 2017, 37, 5141–5145. https://doi.org/10.21873/anticanres.11934.