- 1.
Soto, A.M.; Sonnenschein, C. The somatic mutation theory of cancer: Growing problems with the paradigm? Bioessays 2004, 26, 1097–1107.
- 2.
Brucher, B.L.; Jamall, I.S. Somatic Mutation Theory Why it’s Wrong for Most Cancers. Cell Physiol. Biochem. 2016, 38, 1663–1680.
- 3.
Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab. 2010, 7, 7.
- 4.
Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science 2020, 368, eaaw5473.
- 5.
Robert, W.A. The Biology of Cancer, 3rd ed.; Multi-Step Tumorigenesis; W. W. Norton & Company: New York, NY, USA, 2023; pp. 467–469.
- 6.
Warburg, O. The Metabolism of Carcinoma Cells. J. Cancer Res. 1925, 9, 148–163.
- 7.
Goldblatt, H.; Cameron, G. Induced malignancy in cells from rat myocardium subjected to intermittent anaerobiosis during long propagation in vitro. J. Exp. Med. 1953, 97, 525–552.
- 8.
Fendt, S.M. 100 years of the Warburg effect: A cancer metabolism endeavor. Cell 2024, 187, 3824–3828.
- 9.
Chandel, N.S.; Budinger, G.R.; Choe, S.H.; et al. Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J. Biol. Chem. 1997, 272, 18808–18816.
- 10.
Fan, J.; Kamphorst, J.J.; Mathew, R.; et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 2013, 9, 712.
- 11.
Le, A.; Lane, A.N.; Hamaker, M.; et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012, 15, 110–121.
- 12.
Le, A.; Stine, Z.E.; Nguyen, C.; et al. Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia-cell cycle dual reporter. Proc. Natl. Acad. Sci. USA 2014, 111, 12486–12491.
- 13.
Vaupel, P.; Multhoff, G. Revisiting the Warburg effect: Historical dogma versus current understanding. J. Physiol. 2021, 599, 1745–1757.
- 14.
Vaupel, P.; Schmidberger, H.; Mayer, A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol. 2019, 95, 912–919.
- 15.
Mookerjee, S.A.; Gerencser, A.A.; Nicholls, D.G.; et al. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J. Biol. Chem. 2017, 292, 7189–7207.
- 16.
Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: Variations on a theme. Oncogene 2008, 27, 5497–5510.
- 17.
Stine, Z.E.; Walton, Z.E.; Altman, B.J.; et al. MYC, Metabolism, and Cancer. Cancer Discov. 2015, 5, 1024–1039.
- 18.
Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012, 148, 399–408.
- 19.
Cordani, M.; Michetti, F.; Zarrabi, A.; et al. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024, 58, 101076.
- 20.
Seyfried, T.N.; Arismendi-Morillo, G.; Mukherjee, P.; et al. On the Origin of ATP Synthesis in Cancer. iScience 2020, 23, 101761.
- 21.
DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200.
- 22.
Gatenby, R.A.; Gillies, R.J. A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 2008, 8, 56–61.
- 23.
Zhang, D.; Tang, Z.; Huang, H.; et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019, 574, 575–580.
- 24.
Thienpont, B.; Steinbacher, J.; Zhao, H.; et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 2016, 537, 63–68.
- 25.
Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314.
- 26.
Jin, J.; Byun, J.K.; Choi, Y.K.; et al. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023, 55, 706–715.
- 27.
Xiang, L.; Mou, J.; Shao, B.; et al. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis. 2019, 10, 40.
- 28.
Choi, Y.K.; Park, K.G. Targeting Glutamine Metabolism for Cancer Treatment. Biomol. Ther. 2018, 26, 19–28.
- 29.
Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and Cancer. Cell 2016, 166, 555–566.
- 30.
Weinberg, S.E.; Chandel, N.S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 2015, 11, 9–15.
- 31.
Harguindey, S.; Orive, G.; Luis Pedraz, J.; et al. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin--one single nature. Biochim. Biophys. Acta 2005, 1756, 1–24.
- 32.
Prigogine, I. Time, structure, and fluctuations. Science 1978, 201, 777–785.
- 33.
Semenza, G.L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem. J. 2007, 405, 1–9.
- 34.
Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3, 177–185.
- 35.
King, A.; Selak, M.A.; Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 2006, 25, 4675–4682.
- 36.
Shim, H.; Dolde, C.; Lewis, B.C.; et al. c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. USA 1997, 94, 6658–6663.
- 37.
Gao, P.; Tchernyshyov, I.; Chang, T.C.; et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009, 458, 762–765.
- 38.
Li, F.; Wang, Y.; Zeller, K.I.; et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell Biol. 2005, 25, 6225–6234.
- 39.
Hoxhaj, G.; Manning, B.D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 2020, 20, 74–88.
- 40.
Kazyken, D.; Lentz, S.I.; Wadley, M.; et al. Alkaline intracellular pH (pHi) increases PI3K activity to promote mTORC1 and mTORC2 signaling and function during growth factor limitation. J. Biol. Chem. 2023, 299, 105097.
- 41.
Kazyken, D.; Lentz, S.I.; Fingar, D.C. Alkaline intracellular pH (pHi) activates AMPK-mTORC2 signaling to promote cell survival during growth factor limitation. J. Biol. Chem. 2021, 297, 101100.
- 42.
Lacroix, M.; Riscal, R.; Arena, G.; et al. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol. Metab. 2020, 33, 2–22.
- 43.
González, A.; Hall, M.N.; Lin, S.C.; et al. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab. 2020, 31, 472–492.
- 44.
Faubert, B.; Boily, G.; Izreig, S.; et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013, 17, 113–124.
- 45.
Laderoute, K.R.; Amin, K.; Calaoagan, J.M.; et al. 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol. Cell Biol. 2006, 26, 5336–5347.
- 46.
Wang, N.; Wang, B.; Maswikiti, E.P.; et al. AMPK-a key factor in crosstalk between tumor cell energy metabolism and immune microenvironment? Cell Death Discov. 2024, 10, 237.
- 47.
Laurenti, G.; Tennant, D.A. Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): Three players for one phenotype in cancer? Biochem. Soc. Trans. 2016, 44, 1111–1116.
- 48.
Eniafe, J.; Jiang, S. The functional roles of TCA cycle metabolites in cancer. Oncogene 2021, 40, 3351–3363.
- 49.
An, X.; Yu, W.; Liu, J.; et al. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 2024, 15, 556.
- 50.
Rojo de la Vega, M.; Chapman, E.; Zhang, D.D. NRF2 and the Hallmarks of Cancer. Cancer Cell 2018, 34, 21–43.
- 51.
Abdel-Wahab, A.F.; Mahmoud, W.; Al-Harizy, R.M. Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy. Pharmacol. Res. 2019, 150, 104511.
- 52.
Yang, Y.; Chong, Y.; Chen, M.; et al. Targeting lactate dehydrogenase a improves radiotherapy efficacy in non-small cell lung cancer: From bedside to bench. J. Transl. Med. 2021, 19, 170.
- 53.
Le, A.; Cooper, C.R.; Gouw, A.M.; et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. USA 2010, 107, 2037–2042.
- 54.
Fantin, V.R.; St-Pierre, J.; Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 2006, 9, 425–434.
- 55.
Guo, D.; Meng, Y.; Jiang, X.; et al. Hexokinases in cancer and other pathologies. Cell Insight 2023, 2, 100077.
- 56.
Zahra, K.; Dey, T.; Ashish Mishra, S.P.; et al. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Front. Oncol. 2020, 10, 159.
- 57.
Ma, Z.; Xiang, X.; Li, S.; et al. Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Semin. Cancer Biol. 2022, 80, 379–390.
- 58.
Greenberger, L.M.; Horak, I.D.; Filpula, D.; et al. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol. Cancer Ther. 2008, 7, 3598–3608.
- 59.
Gaete, D.; Rodriguez, D.; Watts, D.; et al. HIF-Prolyl Hydroxylase Domain Proteins (PHDs) in Cancer-Potential. Targets for Anti-Tumor Therapy? Cancers 2021, 13, 988.
- 60.
Kao, T.W.; Bai, G.H.; Wang, T.L.; et al. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J. Exp. Clin. Cancer Res. 2023, 42, 171.
- 61.
Hua, Y.; Zheng, Y.; Yao, Y.; et al. Metformin and cancer hallmarks: Shedding new lights on therapeutic repurposing. J. Transl. Med. 2023, 21, 403.
- 62.
Kennedy, L.; Sandhu, J.K.; Harper, M.E.; et al. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020, 10, 1429.
- 63.
Rajakumar, G.; Cagigas, M.L.; Wang, T.; et al. Effect of ketogenic diets on insulin-like growth factor (IGF)-1 in humans: A systematic review and meta-analysis. Ageing Res. Rev. 2024, 102, 102531.