2511002211
  • Open Access
  • Review

Is Cancer an Evolutionary Adaptation to Metabolic Stress? A Re-Examination of the Fundamental Findings of Warburg, Goldblatt and Cameron

  • Shion Kachi,   
  • Hiromi Wada *

Received: 18 Aug 2025 | Revised: 03 Nov 2025 | Accepted: 10 Nov 2025 | Published: 25 Nov 2025

Abstract

Cancer has traditionally been considered to be a result of genetic mutations, but Otto Warburg’s pioneering research, and subsequent studies by Goldblatt and Cameron have suggested that metabolic dysfunction and environmental stress play important roles in tumor development. Warburg proposed that cancer cells demonstrate respiratory dysfunction even under normal oxygen concentrations, and rely excessively on glycolysis. This phenomenon is now known as the “Warburg effect”. Additionally, Goldblatt and Cameron demonstrated that repeated hypoxic stress on its own can induce the malignant transformation of normal cells. In this review, we integrate these historical insights with recent advances in modern molecular oncology to emphasize the central role of metabolic reprogramming in cancer initiation, and its therapeutic implications.

References 

  • 1.
    Soto, A.M.; Sonnenschein, C. The somatic mutation theory of cancer: Growing problems with the paradigm? Bioessays 2004, 26, 1097–1107.
  • 2.
    Brucher, B.L.; Jamall, I.S. Somatic Mutation Theory Why it’s Wrong for Most Cancers. Cell Physiol. Biochem. 2016, 38, 1663–1680.
  • 3.
    Seyfried, T.N.; Shelton, L.M. Cancer as a metabolic disease. Nutr. Metab. 2010, 7, 7.
  • 4.
    Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science 2020, 368, eaaw5473.
  • 5.
    Robert, W.A. The Biology of Cancer, 3rd ed.; Multi-Step Tumorigenesis; W. W. Norton & Company: New York, NY, USA, 2023; pp. 467–469.
  • 6.
    Warburg, O. The Metabolism of Carcinoma Cells. J. Cancer Res. 1925, 9, 148–163.
  • 7.
    Goldblatt, H.; Cameron, G. Induced malignancy in cells from rat myocardium subjected to intermittent anaerobiosis during long propagation in vitro. J. Exp. Med. 1953, 97, 525–552.
  • 8.
    Fendt, S.M. 100 years of the Warburg effect: A cancer metabolism endeavor. Cell 2024, 187, 3824–3828.
  • 9.
    Chandel, N.S.; Budinger, G.R.; Choe, S.H.; et al. Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J. Biol. Chem. 1997, 272, 18808–18816.
  • 10.
    Fan, J.; Kamphorst, J.J.; Mathew, R.; et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 2013, 9, 712.
  • 11.
    Le, A.; Lane, A.N.; Hamaker, M.; et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012, 15, 110–121.
  • 12.
    Le, A.; Stine, Z.E.; Nguyen, C.; et al. Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia-cell cycle dual reporter. Proc. Natl. Acad. Sci. USA 2014, 111, 12486–12491.
  • 13.
    Vaupel, P.; Multhoff, G. Revisiting the Warburg effect: Historical dogma versus current understanding. J. Physiol. 2021, 599, 1745–1757.
  • 14.
    Vaupel, P.; Schmidberger, H.; Mayer, A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol. 2019, 95, 912–919.
  • 15.
    Mookerjee, S.A.; Gerencser, A.A.; Nicholls, D.G.; et al. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J. Biol. Chem. 2017, 292, 7189–7207.
  • 16.
    Yuan, T.L.; Cantley, L.C. PI3K pathway alterations in cancer: Variations on a theme. Oncogene 2008, 27, 5497–5510.
  • 17.
    Stine, Z.E.; Walton, Z.E.; Altman, B.J.; et al. MYC, Metabolism, and Cancer. Cancer Discov. 2015, 5, 1024–1039.
  • 18.
    Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012, 148, 399–408.
  • 19.
    Cordani, M.; Michetti, F.; Zarrabi, A.; et al. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024, 58, 101076.
  • 20.
    Seyfried, T.N.; Arismendi-Morillo, G.; Mukherjee, P.; et al. On the Origin of ATP Synthesis in Cancer. iScience 2020, 23, 101761.
  • 21.
    DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200.
  • 22.
    Gatenby, R.A.; Gillies, R.J. A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 2008, 8, 56–61.
  • 23.
    Zhang, D.; Tang, Z.; Huang, H.; et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019, 574, 575–580.
  • 24.
    Thienpont, B.; Steinbacher, J.; Zhao, H.; et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 2016, 537, 63–68.
  • 25.
    Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314.
  • 26.
    Jin, J.; Byun, J.K.; Choi, Y.K.; et al. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023, 55, 706–715.
  • 27.
    Xiang, L.; Mou, J.; Shao, B.; et al. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis. 2019, 10, 40.
  • 28.
    Choi, Y.K.; Park, K.G. Targeting Glutamine Metabolism for Cancer Treatment. Biomol. Ther. 2018, 26, 19–28.
  • 29.
    Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and Cancer. Cell 2016, 166, 555–566.
  • 30.
    Weinberg, S.E.; Chandel, N.S. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 2015, 11, 9–15.
  • 31.
    Harguindey, S.; Orive, G.; Luis Pedraz, J.; et al. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin--one single nature. Biochim. Biophys. Acta 2005, 1756, 1–24.
  • 32.
    Prigogine, I. Time, structure, and fluctuations. Science 1978, 201, 777–785.
  • 33.
    Semenza, G.L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem. J. 2007, 405, 1–9.
  • 34.
    Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3, 177–185.
  • 35.
    King, A.; Selak, M.A.; Gottlieb, E. Succinate dehydrogenase and fumarate hydratase: Linking mitochondrial dysfunction and cancer. Oncogene 2006, 25, 4675–4682.
  • 36.
    Shim, H.; Dolde, C.; Lewis, B.C.; et al. c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. USA 1997, 94, 6658–6663.
  • 37.
    Gao, P.; Tchernyshyov, I.; Chang, T.C.; et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009, 458, 762–765.
  • 38.
    Li, F.; Wang, Y.; Zeller, K.I.; et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell Biol. 2005, 25, 6225–6234.
  • 39.
    Hoxhaj, G.; Manning, B.D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 2020, 20, 74–88.
  • 40.
    Kazyken, D.; Lentz, S.I.; Wadley, M.; et al. Alkaline intracellular pH (pHi) increases PI3K activity to promote mTORC1 and mTORC2 signaling and function during growth factor limitation. J. Biol. Chem. 2023, 299, 105097.
  • 41.
    Kazyken, D.; Lentz, S.I.; Fingar, D.C. Alkaline intracellular pH (pHi) activates AMPK-mTORC2 signaling to promote cell survival during growth factor limitation. J. Biol. Chem. 2021, 297, 101100.
  • 42.
    Lacroix, M.; Riscal, R.; Arena, G.; et al. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol. Metab. 2020, 33, 2–22.
  • 43.
    González, A.; Hall, M.N.; Lin, S.C.; et al. AMPK and TOR: The Yin and Yang of Cellular Nutrient Sensing and Growth Control. Cell Metab. 2020, 31, 472–492.
  • 44.
    Faubert, B.; Boily, G.; Izreig, S.; et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013, 17, 113–124.
  • 45.
    Laderoute, K.R.; Amin, K.; Calaoagan, J.M.; et al. 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol. Cell Biol. 2006, 26, 5336–5347.
  • 46.
    Wang, N.; Wang, B.; Maswikiti, E.P.; et al. AMPK-a key factor in crosstalk between tumor cell energy metabolism and immune microenvironment? Cell Death Discov. 2024, 10, 237.
  • 47.
    Laurenti, G.; Tennant, D.A. Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): Three players for one phenotype in cancer? Biochem. Soc. Trans. 2016, 44, 1111–1116.
  • 48.
    Eniafe, J.; Jiang, S. The functional roles of TCA cycle metabolites in cancer. Oncogene 2021, 40, 3351–3363.
  • 49.
    An, X.; Yu, W.; Liu, J.; et al. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 2024, 15, 556.
  • 50.
    Rojo de la Vega, M.; Chapman, E.; Zhang, D.D. NRF2 and the Hallmarks of Cancer. Cancer Cell 2018, 34, 21–43.
  • 51.
    Abdel-Wahab, A.F.; Mahmoud, W.; Al-Harizy, R.M. Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy. Pharmacol. Res. 2019, 150, 104511.
  • 52.
    Yang, Y.; Chong, Y.; Chen, M.; et al. Targeting lactate dehydrogenase a improves radiotherapy efficacy in non-small cell lung cancer: From bedside to bench. J. Transl. Med. 2021, 19, 170.
  • 53.
    Le, A.; Cooper, C.R.; Gouw, A.M.; et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. USA 2010, 107, 2037–2042.
  • 54.
    Fantin, V.R.; St-Pierre, J.; Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 2006, 9, 425–434.
  • 55.
    Guo, D.; Meng, Y.; Jiang, X.; et al. Hexokinases in cancer and other pathologies. Cell Insight 2023, 2, 100077.
  • 56.
    Zahra, K.; Dey, T.; Ashish Mishra, S.P.; et al. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Front. Oncol. 2020, 10, 159.
  • 57.
    Ma, Z.; Xiang, X.; Li, S.; et al. Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Semin. Cancer Biol. 2022, 80, 379–390.
  • 58.
    Greenberger, L.M.; Horak, I.D.; Filpula, D.; et al. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol. Cancer Ther. 2008, 7, 3598–3608.
  • 59.
    Gaete, D.; Rodriguez, D.; Watts, D.; et al. HIF-Prolyl Hydroxylase Domain Proteins (PHDs) in Cancer-Potential. Targets for Anti-Tumor Therapy? Cancers 2021, 13, 988.
  • 60.
    Kao, T.W.; Bai, G.H.; Wang, T.L.; et al. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J. Exp. Clin. Cancer Res. 2023, 42, 171.
  • 61.
    Hua, Y.; Zheng, Y.; Yao, Y.; et al. Metformin and cancer hallmarks: Shedding new lights on therapeutic repurposing. J. Transl. Med. 2023, 21, 403.
  • 62.
    Kennedy, L.; Sandhu, J.K.; Harper, M.E.; et al. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020, 10, 1429.
  • 63.
    Rajakumar, G.; Cagigas, M.L.; Wang, T.; et al. Effect of ketogenic diets on insulin-like growth factor (IGF)-1 in humans: A systematic review and meta-analysis. Ageing Res. Rev. 2024, 102, 102531.
Share this article:
How to Cite
Kachi, S.; Wada, H. Is Cancer an Evolutionary Adaptation to Metabolic Stress? A Re-Examination of the Fundamental Findings of Warburg, Goldblatt and Cameron. Journal of Cancer, Inflammation and Metabolism 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.