- 1.
Akhbarizadeh, R.; Moore, F.; Keshavarzi, B. Investigating Microplastics Bioaccumulation and Biomagnification in Seafood from the Persian Gulf: A Threat to Human Health? Food Addit. Contam. Part A 2019, 36, 1696–1708.
- 2.
Smith, M.; Love, D.C.; Rochman, C.M.; et al. Microplastics in Seafood and the Implications for Human Health. Food Health Environ. 2018, 5, 375–386.
- 3.
Jenner, L.C.; Rotchell, J.M.; Bennett, R.T.; et al. Detection of Microplastics in Human Lung Tissue Using μFTIR Spectroscopy. Sci. Total Environ. 2022, 831, 154907. https://doi.org/10.1016/j.scitotenv.2022.154907.
- 4.
Ragusa, A.; Svelato, A.; Santacroce, C.; et al. Plasticenta: First Evidence of Microplastics in Human Placenta. Environ. Int. 2021, 146, 106274. https://doi.org/10.1016/j.envint.2020.106274.
- 5.
Schwabl, P.; Köppel, S.; Dipl-Ing, K.; et al. Detection of Various Microplastics in Human Stool. Ann. Intern. Med. 2019, 171, 453–457.
- 6.
Zhang, N.; Li, Y.B.; He, H.R.; et al. You Are What You Eat: Microplastics in the Feces of Young Men Living in Beijing. Sci. Total Environ. 2021, 767, 144345. https://doi.org/10.1016/j.scitotenv.2020.144345.
- 7.
Cox, K.D.; Covernton, G.A.; Davies, H.L.; et al. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074.
- 8.
Cavender-Word, T.J.; Roberson, D.A. Development of a Resilience Parameter for 3D-Printable Shape Memory Polymer Blends. Materials 2023, 16, 5906. https://doi.org/10.3390/ma16175906.
- 9.
Hornat, C.C.; Urban, M.W. Shape Memory Effects in Self-Healing Polymers. Prog. Polym. Sci. 2020, 102, 101208. https://doi.org/10.1016/j.progpolymsci.2020.101208.
- 10.
Self-Healing Polymers|Nature Reviews Materials. Available online: https://www.nature.com/articles/s41578-020-0202-4 (accessed on 11 November 2025).
- 11.
Zhang, W.; Chen, L.; Zhang, Y. Surprising Shape-Memory Effect of Polylactide Resulted from Toughening by Polyamide Elastomer. Polymer 2009, 50, 1311–1315. https://doi.org/10.1016/j.polymer.2009.01.032.
- 12.
Quiñonez, P.A.; Bermudez, D.; Ugarte-Sanchez, L.; et al. Tailoring Physical Properties of Shape Memory Polymers for FDM-Type Additive Manufacturing. In Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 12 August 2019; pp. 843–855.
- 13.
Quiñonez, P.A.; Ugarte-Sanchez, L.; Bermudez, D.; et al. Design of Shape Memory Thermoplastic Material Systems for Fdm-Type Additive Manufacturing. Materials 2021, 14, 4254. https://doi.org/10.3390/ma14154254.
- 14.
Lai, S.-M.; Lan, Y.-C. Shape Memory Properties of Melt-Blended Polylactic Acid (PLA)/Thermoplastic Polyurethane (TPU) Bio-Based Blends. J. Polym. Res. 2013, 20, 140. https://doi.org/10.1007/s10965-013-0140-6.
- 15.
Rahmatabadi, D.; Soltanmohammadi, K.; Aberoumand, M.; et al. 4D Printing of Porous PLA-TPU Structures: Effect of Applied Deformation, Loading Mode and Infill Pattern on the Shape Memory Performance. Phys. Scr. 2024, 99, 025013. https://doi.org/10.1088/1402-4896/ad1957.
- 16.
Shin, E.J.; Jung, Y.S.; Park, C.H.; et al. Eco-Friendly TPU/PLA Blends for Application as Shape-Memory 3D Printing Filaments. J. Polym. Env. 2023, 31, 3182–3196. https://doi.org/10.1007/s10924-023-02799-w.
- 17.
Pinto, L.A.; Backes, E.H.; Harb, S.V.; et al. Shape Memory Thermoplastic Polyurethane/Polycaprolactone Blend and Composite with Hydroxyapatite for Biomedical Application. J. Mater. Res. 2024, 39, 90–106. https://doi.org/10.1557/s43578-023-01172-w.
- 18.
Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; et al. 4D Printing-Encapsulated Polycaprolactone–Thermoplastic Polyurethane with High Shape Memory Performances. Adv. Eng. Mater. 2023, 25, 2201309. https://doi.org/10.1002/adem.202201309.
- 19.
4D Printing-Encapsulated Polycaprolactone–Thermoplastic Polyurethane with High Shape Memory Performances-Rahmatabadi-2023-Advanced Engineering Materials—Wiley Online Library. Available online: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adem.202201309 (accessed on 1 July 2025).
- 20.
Tunable Shape Memory Performances via Multilayer Assembly of Thermoplastic Polyurethane and Polycaprolactone|ACS Applied Materials & Interfaces. Available online: https://pubs.acs.org/doi/full/10.1021/acsami.5b10246?casa_token=FdGHzyQMtP8AAAAA%3Atq9iwy1WPh9H2GXjLxCyg37yajA0MOXsaASPgUrMm2tP3WSx2thEM8JefMnmJk6vihDV-dY6NVabU0c (accessed on 1 July 2025).
- 21.
Carrillo, L.E.L.; Gonzalez, Y.O.; Parga, M.; et al. Development of Binary and Ternary Polyester Shape Memory Blends for Additive Manufacturing. J. Mater. Sci. 2024, 59, 8040–8057. https://doi.org/10.1007/s10853-024-09657-7.
- 22.
Delgado Ramos, K.L.; Moreno, S.; Roberson, D.A. Fracture Surface Analysis, Mechanical Property Anisotropy, and Self-Healing Evaluation of Additively Manufactured Polyester Blends. J. Fail. Anal. Preven. 2025, 25, 1921–1936. https://doi.org/10.1007/s11668-025-02255-y.
- 23.
Wool, R.P.; O’Connor, K.M. A Theory Crack Healing in Polymers. J. Appl. Phys. 1981, 52, 5953–5963. https://doi.org/10.1063/1.328526.
- 24.
Peng, Y.; Gu, S.; Wu, Q.; et al. High-Performance Self-Healing Polymers. Acc. Mater. Res. 2023, 4, 323–333. https://doi.org/10.1021/accountsmr.2c00174.
- 25.
Wang, S.; Urban, M.W. Self-Healing Polymers. Nat. Rev. Mater. 2020, 5, 562–583. https://doi.org/10.1038/s41578-020-0202-4.
- 26.
Bhattacharya, S.; Hailstone, R.; Lewis, C.L. Thermoplastic Blend Exhibiting Shape Memory-Assisted Self-Healing Functionality. ACS Appl. Mater. Interfaces 2020, 12, 46733–46742. https://doi.org/10.1021/acsami.0c13645.
- 27.
Jian, X.; Hu, Y.; Zhou, W.; et al. Self-Healing Polyurethane Based on Disulfide Bond and Hydrogen Bond. Polym. Adv. Technol. 2018, 29, 463–469. https://doi.org/10.1002/pat.4135.
- 28.
Fu, Y.; Xu, F.; Weng, D.; et al. Superhydrophobic Foams with Chemical- and Mechanical-Damage-Healing Abilities Enabled by Self-Healing Polymers. ACS Appl. Mater. Interfaces 2019, 11, 37285–37294. https://doi.org/10.1021/acsami.9b11858.
- 29.
Ferreira, J.L.; Gomes, S.; Henriques, C.; et al. Electrospinning Polycaprolactone Dissolved in Glacial Acetic Acid: Fiber Production, Nonwoven Characterization, and In Vitro Evaluation. J. Appl. Polym. Sci. 2014, 131. https://doi.org/10.1002/app.41068.
- 30.
Zhang, X.; Espiritu, M.; Bilyk, A.; et al. Morphological Behaviour of Poly(Lactic Acid) during Hydrolytic Degradation. Polym. Degrad. Stab. 2008, 93, 1964–1970. https://doi.org/10.1016/j.polymdegradstab.2008.06.007.
- 31.
Rossignolo, G.; Malucelli, G.; Lorenzetti, A. Recycling of Polyurethanes: Where We Are and Where We Are Going. Green Chem. 2024, 26, 1132–1152. https://doi.org/10.1039/D3GC02091F.
- 32.
Gao, C.; Meng, L.; Yu, L.; et al. Preparation and Characterization of Uniaxial Poly(Lactic Acid)-Based Self-Reinforced Composites. Compos. Sci. Technol. 2015, 117, 392–397. https://doi.org/10.1016/j.compscitech.2015.07.006.
- 33.
Theron, J.P.; Knoetze, J.H.; Sanderson, R.D.; et al. Modification, Crosslinking and Reactive Electrospinning of a Thermoplastic Medical Polyurethane for Vascular Graft Applications. Acta Biomater. 2010, 6, 2434–2447. https://doi.org/10.1016/j.actbio.2010.01.013.
- 34.
Zhang, S.; Campagne, C.; Salaün, F. Preparation of Electrosprayed Poly(Caprolactone) Microparticles Based on Green Solvents and Related Investigations on the Effects of Solution Properties as Well as Operating Parameters. Coatings 2019, 9, 84. https://doi.org/10.3390/coatings9020084.
- 35.
D20.10 Subcommittee ASTM Standard D638; Standard Test Method for Tensile Properties of Plastics 2022. ASTM International: West Conshohocken, PA, USA, 2022.
- 36.
E37.10 Subcommittee ASTM Standard E1640; Standard Test Method for Assignment of the Glass Transition Temperature By Dynamic Mechanical Analysis. ASTM International: West Conshohocken, PA, USA, 2023.
- 37.
Lares Carrillo, L.E.; Salazar, J.F.; Hitter, M.M.; et al. The Effect of Raster Pattern and Acetic Acid Exposure on the Mechanical and Failure Properties of Additively Manufactured PLA and PLA-Wood Composite Specimens. J Fail. Anal. Preven. 2023, 23, 1298–1312. https://doi.org/10.1007/s11668-023-01681-0.
- 38.
Mahmud, M.S.; Delgadillo, A.; Urbay, J.E.M.; et al. Chemical Aging and Degradation of Stereolithographic 3D-Printed Material: Effect of Printing and Post-Curing Parameters. Polym. Degrad. Stab. 2025, 232, 111151. https://doi.org/10.1016/j.polymdegradstab.2024.111151.
- 39.
Franklin, S. Effect of Different Heating Temperatures and Acetic Acid Concentrations on Physical Quality of Curd as an Ingredient for Milk Nuggets. Available online: https://researcherslinks.com/current-issues/Effect-of-Different-Heating-Temperatures/34/1/10521/html (accessed on 11 November 2025).
- 40.
Kim, E.; Shin, Y.-J.; Ahn, S.-H. The Effects of Moisture and Temperature on the Mechanical Properties of Additive Manufacturing Components: Fused Deposition Modeling. Rapid. Prototyp. J. 2016, 22, 887–894. https://doi.org/10.1108/RPJ-08-2015-0095.
- 41.
Lane, D.M. Tukey’s Honestly Significant Difference (HSD). In Encyclopedia of Research Design; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2010; pp. 1566–1570. ISBN 978-1-4129-6128-8.
- 42.
Bermudez, D.; Quiñonez, P.A.; Vasquez, E.J.; et al. A Comparison of the Physical Properties of Two Commercial 3D Printing PLA Grades. Virtual Phys. Prototyp. 2021, 16, 178–195. https://doi.org/10.1080/17452759.2021.1910047.
- 43.
Sun, T.; Bian, J.; Wang, Y.; et al. One-Step Synthesis of Poly(L-Lactic Acid)-Based Soft Films with Gas Permselectivity for White Mushrooms (Agaricus Bisporus) Preservation. Foods 2023, 12, 586. https://doi.org/10.3390/foods12030586.
- 44.
Nordi, S.S.; Noor, E.E.M.; Kok, C.K.; et al. Phase, Chemical, Thermal, and Morphological Analyses of Thermoplastic Polyurethane (TPU) Nanocomposites Reinforced with Jute Cellulose Nanofibers (CNFs). Polymers 2025, 17, 899. https://doi.org/10.3390/polym17070899.
- 45.
Perin, D.; Dorigato, A.; Pegoretti, A. Thermoplastic Self-Healing Polymer Blends for Structural Composites: Development of Polyamide 6 and Cyclic Olefinic Copolymer Blends. J. Appl. Polym. Sci. 2023, 140, e53751. https://doi.org/10.1002/app.53751.
- 46.
Verma, D.; Katti, K.; Katti, D. Experimental Investigation of Interfaces in Hydroxyapatite/Polyacrylic Acid/Polycaprolactone Composites Using Photoacoustic FTIR Spectroscopy. J. Biomed. Mater. Res. Part A 2006, 77A, 59–66. https://doi.org/10.1002/jbm.a.30592.
- 47.
Ganbaatar, S.E.; Kim, H.-K.; Kang, N.-U.; et al. Calcium Phosphate (CaP) Composite Nanostructures on Polycaprolactone (PCL): Synergistic Effects on Antibacterial Activity and Osteoblast Behavior. Polymers 2025, 17, 200. https://doi.org/10.3390/polym17020200.
- 48.
Olszewski, A.; Kosmela, P.; Piasecki, A.; et al. Comprehensive Investigation of Stoichiometry–Structure–Performance Relationships in Flexible Polyurethane Foams. Polymers 2022, 14, 3813. https://doi.org/10.3390/polym14183813.
- 49.
Monteiro, W.F.; Miranda, G.M.; Soares, R.R.; et al. Weathering Resistance of Waterborne Polyurethane Coatings Reinforced with Silica from Rice Husk Ash. An. Acad. Bras. Ciênc. 2019, 91, e20181190. https://doi.org/10.1590/0001-3765201920181190.
- 50.
Kim, S. Characterization of Mechanical, Thermal and Rheological Properties of Silica-Based Nanocomposite Filled Thermoplastic Polyurethane Film. Macromol. Res. 2024, 32, 727–743. https://doi.org/10.1007/s13233-024-00286-2.
- 51.
Morita, S. Hydrogen-Bonds Structure in Poly(2-Hydroxyethyl Methacrylate) Studied by Temperature-Dependent Infrared Spectroscopy. ResearchGate 2025, 2, 10. https://doi.org/10.3389/fchem.2014.00010.
- 52.
Smith, B.C. The Infrared Spectra of Polymers, VI: Polymers With C-O Bonds|Spectroscopy Online. Available online: https://www.spectroscopyonline.com/view/the-infrared-spectra-of-polymers-vi-polymers-with-c-o-bonds?utm_source=chatgpt.com (accessed on 13 November 2025).
- 53.
Defeyt, C.; Langenbacher, J.; Rivenc, R. Polyurethane Coatings Used in Twentieth Century Outdoor Painted Sculptures. Part I: Comparative Study of Various Systems by Means of ATR-FTIR Spectroscopy. Herit. Sci. 2017, 5, 11. https://doi.org/10.1186/s40494-017-0124-7.
- 54.
Dreier, L.B.; Bonn, M.; Backus, E.H.G. Hydration and Orientation of Carbonyl Groups in Oppositely Charged Lipid Monolayers on Water. J. Phys. Chem. B 2019, 123, 1085–1089. https://doi.org/10.1021/acs.jpcb.8b12297.
- 55.
Hashim, Z.; Zaki, S.; Muhamad, I. Quality Assessment of Fried Palm Oils Using Fourier Transform Infrared Spectroscopy and Multivariate Approach. Chem. Eng. Trans. 2017, 56, 829–834. https://doi.org/10.3303/CET1756139.
- 56.
Elzein, T.; Nasser-Eddine, M.; Delaite, C.; et al. FTIR Study of Polycaprolactone Chain Organization at Interfaces. J. Colloid Interface Sci. 2004, 273, 381–387. https://doi.org/10.1016/j.jcis.2004.02.001.
- 57.
Anaya-Mancipe, J.M.; de Figueiredo, A.C.; Rabello, L.G.; et al. Evaluation of the Polycaprolactone Hydrolytic Degradation in Acid Solvent and Its Influence on the Electrospinning Process. J. Appl. Polym. Sci. 2024, 141, e55662. https://doi.org/10.1002/app.55662.
- 58.
Siqueiros, J.G.; Roberson, D.A. In Situ Wire Drawing of Phosphate Glass in Polymer Matrices for Material Extrusion 3D Printing. Int. J. Polym. Sci. 2017, 2017, 1954903. https://doi.org/10.1155/2017/1954903.
- 59.
Wang, Y.; Nie, H.; Wang, S.; et al. Dual-Functional Biopolyurethane Blends with Shape-Memory and Self-Healing Properties: Effects of Mixed Hard Domains on Structures and Properties. ACS Appl. Polym. Mater. 2023, 5, 9364–9374. https://doi.org/10.1021/acsapm.3c01865.
- 60.
Petrović, Z.S.; Djonlagić, J.; Hong, J.; et al. Structure Development in Cross-Linked, Soybean Oil-Based Waterborne Polyurethanes. J. Polym. Env. 2025, 33, 2091–2108. https://doi.org/10.1007/s10924-024-03368-5.
- 61.
Castro, J.I.; Araujo-Rodríguez, D.G.; Valencia-Llano, C.H.; et al. Biocompatibility Assessment of Polycaprolactone/Polylactic Acid/Zinc Oxide Nanoparticle Composites Under In Vivo Conditions for Biomedical Applications. Pharmaceutics 2023, 15, 2196. https://doi.org/10.3390/pharmaceutics15092196.
- 62.
Archer, E.; Torretti, M.; Madbouly, S. Biodegradable Polycaprolactone (PCL) Based Polymer and Composites. Phys. Sci. Rev. 2023, 8, 4391–4414. https://doi.org/10.1515/psr-2020-0074.
- 63.
Mohammed, K.S.; Coskun, M.; Babakr, K.A.; et al. Blending of Polycaprolactone with Polyvinyl Chloride Polymers Using Silica Gel as a Functional Reinforcement. J. Mater. Sci. Mater. Electron. 2025, 36, 2020. https://doi.org/10.1007/s10854-025-16102-1.
- 64.
Salaris, V.; López, D.; Kenny, J.M.; et al. Hydrolytic Degradation and Bioactivity of Electrospun PCL-Mg-NPs Fibrous Mats. Molecules 2023, 28, 1001. https://doi.org/10.3390/molecules28031001.
- 65.
Leroux, A.; Nguyen, T.N.; Rangel, A.; et al. Long-Term Hydrolytic Degradation Study of Polycaprolactone Films and Fibers Grafted with Poly(Sodium Styrene Sulfonate): Mechanism Study and Cell Response. Biointerphases 2020, 15, 061006. https://doi.org/10.1116/6.0000429.
- 66.
Kavda, S.; Golfomitsou, S.; Richardson, E. Effects of Selected Solvents on PMMA after Prolonged Exposure: Unilateral NMR and ATR-FTIR Investigations. Herit. Sci. 2023, 11, 63. https://doi.org/10.1186/s40494-023-00881-z.
- 67.
Smith, B.C. Organic Nitrogen Compounds IX: Urethanes and Diisocyanates|Spectroscopy Online. Available online: https://www.spectroscopyonline.com/view/organic-nitrogen-compounds-ix-urethanes-and-diisocyanates (accessed on 12 November 2025).
- 68.
Djouadi, Z.; Vinogradoff, V.; Dionnet, Z.; et al. Asuka 12236 More Primitive than Paris: Clues given by Their Infrared and Raman Micro-Spectroscopy Signatures. Meteorit. Planet. Sci. 2025, 60, 1851–1860. https://doi.org/10.1111/maps.70017.
- 69.
Zhang, H.; Mao, X.; Du, S.; et al. Micromechanism of the Effect of Coal Functional Groups on the Catalytic/Esterification Reaction of Acetic Acid. J. Mol. Liq. 2024, 411, 125796. https://doi.org/10.1016/j.molliq.2024.125796.
- 70.
Nashchekina, Y.; Chabina, A.; Moskalyuk, O.; et al. Effect of Functionalization of the Polycaprolactone Film Surface on the Mechanical and Biological Properties of the Film Itself. Polymers 2022, 14, 4654. https://doi.org/10.3390/polym14214654.
- 71.
Kayan, G.Ö.; Kayan, A. Polycaprolactone Composites/Blends and Their Applications Especially in Water Treatment. ChemEngineering 2023, 7, 104. https://doi.org/10.3390/chemengineering7060104.
- 72.
Thakur, M.; Majid, I.; Hussain, S.; et al. Poly(ε-Caprolactone): A Potential Polymer for Biodegradable Food Packaging Applications. Packag. Technol. Sci. 2021, 34, 449–461. https://doi.org/10.1002/pts.2572.
- 73.
Carrete, I.A.; Bermudez, D.; Aguirre, C.; et al. Failure Analysis of Additively Manufactured Polyester Test Specimens Exposed to Various Liquid Media. J. Fail. Anal. Preven. 2019, 19, 418–430. https://doi.org/10.1007/s11668-019-00614-0.
- 74.
Fernández-Tena, A.; Pérez-Camargo, R.A.; Coulembier, O.; et al. Effect of Molecular Weight on the Crystallization and Melt Memory of Poly(ε-Caprolactone) (PCL). Macromolecules 2023, 56, 4602–4620. https://doi.org/10.1021/acs.macromol.3c00234.
- 75.
Çay, A.; Kumbasar, E.P.A.; Akduman, Ç. Effects of solvent mixtures on the morphology of electrospun thermoplastic polyurethane nanofibres. Text. Appar. 2015, 25, 38–46.
- 76.
Marșavina, L.; Vălean, C.; Mărghitaș, M.; et al. Effect of the Manufacturing Parameters on the Tensile and Fracture Properties of FDM 3D-Printed PLA Specimens. Eng. Fract. Mech. 2022, 274, 108766. https://doi.org/10.1016/j.engfracmech.2022.108766.
- 77.
Ćwikła, G.; Grabowik, C.; Kalinowski, K.; et al. The Influence of Printing Parameters on Selected Mechanical Properties of FDM/FFF 3D-Printed Parts. IOP Conf. Ser. Mater. Sci. Eng. 2017, 227, 012033. https://doi.org/10.1088/1757-899X/227/1/012033.
- 78.
Rodríguez-Reyna, S.L.; Mata, C.; Díaz-Aguilera, J.H.; et al. Mechanical Properties Optimization for PLA, ABS and Nylon + CF Manufactured by 3D FDM Printing. Mater. Today Commun. 2022, 33, 104774. https://doi.org/10.1016/j.mtcomm.2022.104774.
- 79.
Cojocaru, V.; Frunzaverde, D.; Miclosina, C.-O.; et al. The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication—A Review. Polymers 2022, 14, 886. https://doi.org/10.3390/polym14050886.
- 80.
The Effect of Processing Parameters on the Mechanical Characteristics of PLA Produced by a 3D FFF Printer|The International Journal of Advanced Manufacturing Technology. Available online: https://link.springer.com/article/10.1007/s00170-020-06138-4 (accessed on 11 November 2025).
- 81.
Peterlin, A. Tensile Failure of Crystalline Polymers. J. Macromol. Sci. Part B 1981, 19, 401–419. https://doi.org/10.1080/00222348108015311.