2511002355
  • Open Access
  • Article

Evaluating the Ability of Additively Manufactured Polyester Blends to Thermally Recover from Organic Chemical Exposure

  • Katia Lizbeth Delgado Ramos 1,2,   
  • Stephanie Moreno 1,2,   
  • Osvaldo Bustamante 1,2,   
  • David A. Roberson 1,2,*

Received: 06 Oct 2025 | Revised: 19 Nov 2025 | Accepted: 21 Nov 2025 | Published: 26 Nov 2025

Abstract

The work presented here sought to understand if damage induced to polymeric materials by chemical exposure could be mitigated by thermal annealing. This concept has not been widely explored in literature. Here, two polymer blends with known shape memory properties and documented thermal process for shape recovery; a binary blend of equal parts by mass polycaprolactone (PCL)/thermoplastic urethane (TPU), and a ternary mixture of equal parts by mass polycaprolactone (PCL), thermoplastic urethane (TPU), and polylactic acid (PLA) were subjected to chemical exposure to either ethyl acetate or heated acetic acid for a duration of 7 days. The specimens were fabricated by fused filament fabrication (FFF) in two different raster orientations. Swell testing revealed a dependence on raster orientation for solvent uptake. Characterization of the chemical bonds by FTIR-ATR revealed the acetic acid exposure to be more damaging in terms of breaking of chemical bonds and that thermal recovery reforms some bonds. Analysis of tensile test results with Tukey-Kramer Honestly Significant Difference revealed thermally annealing specimens after chemical exposure could recover mechanical properties to a level similar to specimens that were not exposed. Analysis by scanning electron microscopy revealed that the chemical attack was concentrated at the print raster interface, leading to delamination between the print rasters. Analysis by way of DMA revealed that chemical exposure lowered the max tan δ value, but not the temperature at which this parameter was reached as compared to control specimens. This work demonstrates that thermally induced recovery can heal chemical damage to polymer materials, offering a route to extend the life of plastic parts and reduce polymer waste. 

References 

  • 1.
    Akhbarizadeh, R.; Moore, F.; Keshavarzi, B. Investigating Microplastics Bioaccumulation and Biomagnification in Seafood from the Persian Gulf: A Threat to Human Health? Food Addit. Contam. Part A 2019, 36, 1696–1708.
  • 2.
    Smith, M.; Love, D.C.; Rochman, C.M.; et al. Microplastics in Seafood and the Implications for Human Health. Food Health Environ. 2018, 5, 375–386.
  • 3.
    Jenner, L.C.; Rotchell, J.M.; Bennett, R.T.; et al. Detection of Microplastics in Human Lung Tissue Using μFTIR Spectroscopy. Sci. Total Environ. 2022, 831, 154907. https://doi.org/10.1016/j.scitotenv.2022.154907.
  • 4.
    Ragusa, A.; Svelato, A.; Santacroce, C.; et al. Plasticenta: First Evidence of Microplastics in Human Placenta. Environ. Int. 2021, 146, 106274. https://doi.org/10.1016/j.envint.2020.106274.
  • 5.
    Schwabl, P.; Köppel, S.; Dipl-Ing, K.; et al. Detection of Various Microplastics in Human Stool. Ann. Intern. Med. 2019, 171, 453–457.
  • 6.
    Zhang, N.; Li, Y.B.; He, H.R.; et al. You Are What You Eat: Microplastics in the Feces of Young Men Living in Beijing. Sci. Total Environ. 2021, 767, 144345. https://doi.org/10.1016/j.scitotenv.2020.144345.
  • 7.
    Cox, K.D.; Covernton, G.A.; Davies, H.L.; et al. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074.
  • 8.
    Cavender-Word, T.J.; Roberson, D.A. Development of a Resilience Parameter for 3D-Printable Shape Memory Polymer Blends. Materials 2023, 16, 5906. https://doi.org/10.3390/ma16175906.
  • 9.
    Hornat, C.C.; Urban, M.W. Shape Memory Effects in Self-Healing Polymers. Prog. Polym. Sci. 2020, 102, 101208. https://doi.org/10.1016/j.progpolymsci.2020.101208.
  • 10.
    Self-Healing Polymers|Nature Reviews Materials. Available online: https://www.nature.com/articles/s41578-020-0202-4 (accessed on 11 November 2025).
  • 11.
    Zhang, W.; Chen, L.; Zhang, Y. Surprising Shape-Memory Effect of Polylactide Resulted from Toughening by Polyamide Elastomer. Polymer 2009, 50, 1311–1315. https://doi.org/10.1016/j.polymer.2009.01.032.
  • 12.
    Quiñonez, P.A.; Bermudez, D.; Ugarte-Sanchez, L.; et al. Tailoring Physical Properties of Shape Memory Polymers for FDM-Type Additive Manufacturing. In Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 12 August 2019; pp. 843–855.
  • 13.
    Quiñonez, P.A.; Ugarte-Sanchez, L.; Bermudez, D.; et al. Design of Shape Memory Thermoplastic Material Systems for Fdm-Type Additive Manufacturing. Materials 2021, 14, 4254. https://doi.org/10.3390/ma14154254.
  • 14.
    Lai, S.-M.; Lan, Y.-C. Shape Memory Properties of Melt-Blended Polylactic Acid (PLA)/Thermoplastic Polyurethane (TPU) Bio-Based Blends. J. Polym. Res. 2013, 20, 140. https://doi.org/10.1007/s10965-013-0140-6.
  • 15.
    Rahmatabadi, D.; Soltanmohammadi, K.; Aberoumand, M.; et al. 4D Printing of Porous PLA-TPU Structures: Effect of Applied Deformation, Loading Mode and Infill Pattern on the Shape Memory Performance. Phys. Scr. 2024, 99, 025013. https://doi.org/10.1088/1402-4896/ad1957.
  • 16.
    Shin, E.J.; Jung, Y.S.; Park, C.H.; et al. Eco-Friendly TPU/PLA Blends for Application as Shape-Memory 3D Printing Filaments. J. Polym. Env. 2023, 31, 3182–3196. https://doi.org/10.1007/s10924-023-02799-w.
  • 17.
    Pinto, L.A.; Backes, E.H.; Harb, S.V.; et al. Shape Memory Thermoplastic Polyurethane/Polycaprolactone Blend and Composite with Hydroxyapatite for Biomedical Application. J. Mater. Res. 2024, 39, 90–106. https://doi.org/10.1557/s43578-023-01172-w.
  • 18.
    Rahmatabadi, D.; Aberoumand, M.; Soltanmohammadi, K.; et al. 4D Printing-Encapsulated Polycaprolactone–Thermoplastic Polyurethane with High Shape Memory Performances. Adv. Eng. Mater. 2023, 25, 2201309. https://doi.org/10.1002/adem.202201309.
  • 19.
    4D Printing-Encapsulated Polycaprolactone–Thermoplastic Polyurethane with High Shape Memory Performances-Rahmatabadi-2023-Advanced Engineering Materials—Wiley Online Library. Available online: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adem.202201309 (accessed on 1 July 2025).
  • 20.
    Tunable Shape Memory Performances via Multilayer Assembly of Thermoplastic Polyurethane and Polycaprolactone|ACS Applied Materials & Interfaces. Available online: https://pubs.acs.org/doi/full/10.1021/acsami.5b10246?casa_token=FdGHzyQMtP8AAAAA%3Atq9iwy1WPh9H2GXjLxCyg37yajA0MOXsaASPgUrMm2tP3WSx2thEM8JefMnmJk6vihDV-dY6NVabU0c (accessed on 1 July 2025).
  • 21.
    Carrillo, L.E.L.; Gonzalez, Y.O.; Parga, M.; et al. Development of Binary and Ternary Polyester Shape Memory Blends for Additive Manufacturing. J. Mater. Sci. 2024, 59, 8040–8057. https://doi.org/10.1007/s10853-024-09657-7.
  • 22.
    Delgado Ramos, K.L.; Moreno, S.; Roberson, D.A. Fracture Surface Analysis, Mechanical Property Anisotropy, and Self-Healing Evaluation of Additively Manufactured Polyester Blends. J. Fail. Anal. Preven. 2025, 25, 1921–1936. https://doi.org/10.1007/s11668-025-02255-y.
  • 23.
    Wool, R.P.; O’Connor, K.M. A Theory Crack Healing in Polymers. J. Appl. Phys. 1981, 52, 5953–5963. https://doi.org/10.1063/1.328526.
  • 24.
    Peng, Y.; Gu, S.; Wu, Q.; et al. High-Performance Self-Healing Polymers. Acc. Mater. Res. 2023, 4, 323–333. https://doi.org/10.1021/accountsmr.2c00174.
  • 25.
    Wang, S.; Urban, M.W. Self-Healing Polymers. Nat. Rev. Mater. 2020, 5, 562–583. https://doi.org/10.1038/s41578-020-0202-4.
  • 26.
    Bhattacharya, S.; Hailstone, R.; Lewis, C.L. Thermoplastic Blend Exhibiting Shape Memory-Assisted Self-Healing Functionality. ACS Appl. Mater. Interfaces 2020, 12, 46733–46742. https://doi.org/10.1021/acsami.0c13645.
  • 27.
    Jian, X.; Hu, Y.; Zhou, W.; et al. Self-Healing Polyurethane Based on Disulfide Bond and Hydrogen Bond. Polym. Adv. Technol. 2018, 29, 463–469. https://doi.org/10.1002/pat.4135.
  • 28.
    Fu, Y.; Xu, F.; Weng, D.; et al. Superhydrophobic Foams with Chemical- and Mechanical-Damage-Healing Abilities Enabled by Self-Healing Polymers. ACS Appl. Mater. Interfaces 2019, 11, 37285–37294. https://doi.org/10.1021/acsami.9b11858.
  • 29.
    Ferreira, J.L.; Gomes, S.; Henriques, C.; et al. Electrospinning Polycaprolactone Dissolved in Glacial Acetic Acid: Fiber Production, Nonwoven Characterization, and In Vitro Evaluation. J. Appl. Polym. Sci. 2014, 131. https://doi.org/10.1002/app.41068.
  • 30.
    Zhang, X.; Espiritu, M.; Bilyk, A.; et al. Morphological Behaviour of Poly(Lactic Acid) during Hydrolytic Degradation. Polym. Degrad. Stab. 2008, 93, 1964–1970. https://doi.org/10.1016/j.polymdegradstab.2008.06.007.
  • 31.
    Rossignolo, G.; Malucelli, G.; Lorenzetti, A. Recycling of Polyurethanes: Where We Are and Where We Are Going. Green Chem. 2024, 26, 1132–1152. https://doi.org/10.1039/D3GC02091F.
  • 32.
    Gao, C.; Meng, L.; Yu, L.; et al. Preparation and Characterization of Uniaxial Poly(Lactic Acid)-Based Self-Reinforced Composites. Compos. Sci. Technol. 2015, 117, 392–397. https://doi.org/10.1016/j.compscitech.2015.07.006.
  • 33.
    Theron, J.P.; Knoetze, J.H.; Sanderson, R.D.; et al. Modification, Crosslinking and Reactive Electrospinning of a Thermoplastic Medical Polyurethane for Vascular Graft Applications. Acta Biomater. 2010, 6, 2434–2447. https://doi.org/10.1016/j.actbio.2010.01.013.
  • 34.
    Zhang, S.; Campagne, C.; Salaün, F. Preparation of Electrosprayed Poly(Caprolactone) Microparticles Based on Green Solvents and Related Investigations on the Effects of Solution Properties as Well as Operating Parameters. Coatings 2019, 9, 84. https://doi.org/10.3390/coatings9020084.
  • 35.
    D20.10 Subcommittee ASTM Standard D638; Standard Test Method for Tensile Properties of Plastics 2022. ASTM International: West Conshohocken, PA, USA, 2022.
  • 36.
    E37.10 Subcommittee ASTM Standard E1640; Standard Test Method for Assignment of the Glass Transition Temperature By Dynamic Mechanical Analysis. ASTM International: West Conshohocken, PA, USA, 2023.
  • 37.
    Lares Carrillo, L.E.; Salazar, J.F.; Hitter, M.M.; et al. The Effect of Raster Pattern and Acetic Acid Exposure on the Mechanical and Failure Properties of Additively Manufactured PLA and PLA-Wood Composite Specimens. J Fail. Anal. Preven. 2023, 23, 1298–1312. https://doi.org/10.1007/s11668-023-01681-0.
  • 38.
    Mahmud, M.S.; Delgadillo, A.; Urbay, J.E.M.; et al. Chemical Aging and Degradation of Stereolithographic 3D-Printed Material: Effect of Printing and Post-Curing Parameters. Polym. Degrad. Stab. 2025, 232, 111151. https://doi.org/10.1016/j.polymdegradstab.2024.111151.
  • 39.
    Franklin, S. Effect of Different Heating Temperatures and Acetic Acid Concentrations on Physical Quality of Curd as an Ingredient for Milk Nuggets. Available online: https://researcherslinks.com/current-issues/Effect-of-Different-Heating-Temperatures/34/1/10521/html (accessed on 11 November 2025).
  • 40.
    Kim, E.; Shin, Y.-J.; Ahn, S.-H. The Effects of Moisture and Temperature on the Mechanical Properties of Additive Manufacturing Components: Fused Deposition Modeling. Rapid. Prototyp. J. 2016, 22, 887–894. https://doi.org/10.1108/RPJ-08-2015-0095.
  • 41.
    Lane, D.M. Tukey’s Honestly Significant Difference (HSD). In Encyclopedia of Research Design; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2010; pp. 1566–1570. ISBN 978-1-4129-6128-8.
  • 42.
    Bermudez, D.; Quiñonez, P.A.; Vasquez, E.J.; et al. A Comparison of the Physical Properties of Two Commercial 3D Printing PLA Grades. Virtual Phys. Prototyp. 2021, 16, 178–195. https://doi.org/10.1080/17452759.2021.1910047.
  • 43.
    Sun, T.; Bian, J.; Wang, Y.; et al. One-Step Synthesis of Poly(L-Lactic Acid)-Based Soft Films with Gas Permselectivity for White Mushrooms (Agaricus Bisporus) Preservation. Foods 2023, 12, 586. https://doi.org/10.3390/foods12030586.
  • 44.
    Nordi, S.S.; Noor, E.E.M.; Kok, C.K.; et al. Phase, Chemical, Thermal, and Morphological Analyses of Thermoplastic Polyurethane (TPU) Nanocomposites Reinforced with Jute Cellulose Nanofibers (CNFs). Polymers 2025, 17, 899. https://doi.org/10.3390/polym17070899.
  • 45.
    Perin, D.; Dorigato, A.; Pegoretti, A. Thermoplastic Self-Healing Polymer Blends for Structural Composites: Development of Polyamide 6 and Cyclic Olefinic Copolymer Blends. J. Appl. Polym. Sci. 2023, 140, e53751. https://doi.org/10.1002/app.53751.
  • 46.
    Verma, D.; Katti, K.; Katti, D. Experimental Investigation of Interfaces in Hydroxyapatite/Polyacrylic Acid/Polycaprolactone Composites Using Photoacoustic FTIR Spectroscopy. J. Biomed. Mater. Res. Part A 2006, 77A, 59–66. https://doi.org/10.1002/jbm.a.30592.
  • 47.
    Ganbaatar, S.E.; Kim, H.-K.; Kang, N.-U.; et al. Calcium Phosphate (CaP) Composite Nanostructures on Polycaprolactone (PCL): Synergistic Effects on Antibacterial Activity and Osteoblast Behavior. Polymers 2025, 17, 200. https://doi.org/10.3390/polym17020200.
  • 48.
    Olszewski, A.; Kosmela, P.; Piasecki, A.; et al. Comprehensive Investigation of Stoichiometry–Structure–Performance Relationships in Flexible Polyurethane Foams. Polymers 2022, 14, 3813. https://doi.org/10.3390/polym14183813.
  • 49.
    Monteiro, W.F.; Miranda, G.M.; Soares, R.R.; et al. Weathering Resistance of Waterborne Polyurethane Coatings Reinforced with Silica from Rice Husk Ash. An. Acad. Bras. Ciênc. 2019, 91, e20181190. https://doi.org/10.1590/0001-3765201920181190.
  • 50.
    Kim, S. Characterization of Mechanical, Thermal and Rheological Properties of Silica-Based Nanocomposite Filled Thermoplastic Polyurethane Film. Macromol. Res. 2024, 32, 727–743. https://doi.org/10.1007/s13233-024-00286-2.
  • 51.
    Morita, S. Hydrogen-Bonds Structure in Poly(2-Hydroxyethyl Methacrylate) Studied by Temperature-Dependent Infrared Spectroscopy. ResearchGate 2025, 2, 10. https://doi.org/10.3389/fchem.2014.00010.
  • 52.
    Smith, B.C. The Infrared Spectra of Polymers, VI: Polymers With C-O Bonds|Spectroscopy Online. Available online: https://www.spectroscopyonline.com/view/the-infrared-spectra-of-polymers-vi-polymers-with-c-o-bonds?utm_source=chatgpt.com (accessed on 13 November 2025).
  • 53.
    Defeyt, C.; Langenbacher, J.; Rivenc, R. Polyurethane Coatings Used in Twentieth Century Outdoor Painted Sculptures. Part I: Comparative Study of Various Systems by Means of ATR-FTIR Spectroscopy. Herit. Sci. 2017, 5, 11. https://doi.org/10.1186/s40494-017-0124-7.
  • 54.
    Dreier, L.B.; Bonn, M.; Backus, E.H.G. Hydration and Orientation of Carbonyl Groups in Oppositely Charged Lipid Monolayers on Water. J. Phys. Chem. B 2019, 123, 1085–1089. https://doi.org/10.1021/acs.jpcb.8b12297.
  • 55.
    Hashim, Z.; Zaki, S.; Muhamad, I. Quality Assessment of Fried Palm Oils Using Fourier Transform Infrared Spectroscopy and Multivariate Approach. Chem. Eng. Trans. 2017, 56, 829–834. https://doi.org/10.3303/CET1756139.
  • 56.
    Elzein, T.; Nasser-Eddine, M.; Delaite, C.; et al. FTIR Study of Polycaprolactone Chain Organization at Interfaces. J. Colloid Interface Sci. 2004, 273, 381–387. https://doi.org/10.1016/j.jcis.2004.02.001.
  • 57.
    Anaya-Mancipe, J.M.; de Figueiredo, A.C.; Rabello, L.G.; et al. Evaluation of the Polycaprolactone Hydrolytic Degradation in Acid Solvent and Its Influence on the Electrospinning Process. J. Appl. Polym. Sci. 2024, 141, e55662. https://doi.org/10.1002/app.55662.
  • 58.
    Siqueiros, J.G.; Roberson, D.A. In Situ Wire Drawing of Phosphate Glass in Polymer Matrices for Material Extrusion 3D Printing. Int. J. Polym. Sci. 2017, 2017, 1954903. https://doi.org/10.1155/2017/1954903.
  • 59.
    Wang, Y.; Nie, H.; Wang, S.; et al. Dual-Functional Biopolyurethane Blends with Shape-Memory and Self-Healing Properties: Effects of Mixed Hard Domains on Structures and Properties. ACS Appl. Polym. Mater. 2023, 5, 9364–9374. https://doi.org/10.1021/acsapm.3c01865.
  • 60.
    Petrović, Z.S.; Djonlagić, J.; Hong, J.; et al. Structure Development in Cross-Linked, Soybean Oil-Based Waterborne Polyurethanes. J. Polym. Env. 2025, 33, 2091–2108. https://doi.org/10.1007/s10924-024-03368-5.
  • 61.
    Castro, J.I.; Araujo-Rodríguez, D.G.; Valencia-Llano, C.H.; et al. Biocompatibility Assessment of Polycaprolactone/Polylactic Acid/Zinc Oxide Nanoparticle Composites Under In Vivo Conditions for Biomedical Applications. Pharmaceutics 2023, 15, 2196. https://doi.org/10.3390/pharmaceutics15092196.
  • 62.
    Archer, E.; Torretti, M.; Madbouly, S. Biodegradable Polycaprolactone (PCL) Based Polymer and Composites. Phys. Sci. Rev. 2023, 8, 4391–4414. https://doi.org/10.1515/psr-2020-0074.
  • 63.
    Mohammed, K.S.; Coskun, M.; Babakr, K.A.; et al. Blending of Polycaprolactone with Polyvinyl Chloride Polymers Using Silica Gel as a Functional Reinforcement. J. Mater. Sci. Mater. Electron. 2025, 36, 2020. https://doi.org/10.1007/s10854-025-16102-1.
  • 64.
    Salaris, V.; López, D.; Kenny, J.M.; et al. Hydrolytic Degradation and Bioactivity of Electrospun PCL-Mg-NPs Fibrous Mats. Molecules 2023, 28, 1001. https://doi.org/10.3390/molecules28031001.
  • 65.
    Leroux, A.; Nguyen, T.N.; Rangel, A.; et al. Long-Term Hydrolytic Degradation Study of Polycaprolactone Films and Fibers Grafted with Poly(Sodium Styrene Sulfonate): Mechanism Study and Cell Response. Biointerphases 2020, 15, 061006. https://doi.org/10.1116/6.0000429.
  • 66.
    Kavda, S.; Golfomitsou, S.; Richardson, E. Effects of Selected Solvents on PMMA after Prolonged Exposure: Unilateral NMR and ATR-FTIR Investigations. Herit. Sci. 2023, 11, 63. https://doi.org/10.1186/s40494-023-00881-z.
  • 67.
    Smith, B.C. Organic Nitrogen Compounds IX: Urethanes and Diisocyanates|Spectroscopy Online. Available online: https://www.spectroscopyonline.com/view/organic-nitrogen-compounds-ix-urethanes-and-diisocyanates (accessed on 12 November 2025).
  • 68.
    Djouadi, Z.; Vinogradoff, V.; Dionnet, Z.; et al. Asuka 12236 More Primitive than Paris: Clues given by Their Infrared and Raman Micro-Spectroscopy Signatures. Meteorit. Planet. Sci. 2025, 60, 1851–1860. https://doi.org/10.1111/maps.70017.
  • 69.
    Zhang, H.; Mao, X.; Du, S.; et al. Micromechanism of the Effect of Coal Functional Groups on the Catalytic/Esterification Reaction of Acetic Acid. J. Mol. Liq. 2024, 411, 125796. https://doi.org/10.1016/j.molliq.2024.125796.
  • 70.
    Nashchekina, Y.; Chabina, A.; Moskalyuk, O.; et al. Effect of Functionalization of the Polycaprolactone Film Surface on the Mechanical and Biological Properties of the Film Itself. Polymers 2022, 14, 4654. https://doi.org/10.3390/polym14214654.
  • 71.
    Kayan, G.Ö.; Kayan, A. Polycaprolactone Composites/Blends and Their Applications Especially in Water Treatment. ChemEngineering 2023, 7, 104. https://doi.org/10.3390/chemengineering7060104.
  • 72.
    Thakur, M.; Majid, I.; Hussain, S.; et al. Poly(ε-Caprolactone): A Potential Polymer for Biodegradable Food Packaging Applications. Packag. Technol. Sci. 2021, 34, 449–461. https://doi.org/10.1002/pts.2572.
  • 73.
    Carrete, I.A.; Bermudez, D.; Aguirre, C.; et al. Failure Analysis of Additively Manufactured Polyester Test Specimens Exposed to Various Liquid Media. J. Fail. Anal. Preven. 2019, 19, 418–430. https://doi.org/10.1007/s11668-019-00614-0.
  • 74.
    Fernández-Tena, A.; Pérez-Camargo, R.A.; Coulembier, O.; et al. Effect of Molecular Weight on the Crystallization and Melt Memory of Poly(ε-Caprolactone) (PCL). Macromolecules 2023, 56, 4602–4620. https://doi.org/10.1021/acs.macromol.3c00234.
  • 75.
    Çay, A.; Kumbasar, E.P.A.; Akduman, Ç. Effects of solvent mixtures on the morphology of electrospun thermoplastic polyurethane nanofibres. Text. Appar. 2015, 25, 38–46.
  • 76.
    Marșavina, L.; Vălean, C.; Mărghitaș, M.; et al. Effect of the Manufacturing Parameters on the Tensile and Fracture Properties of FDM 3D-Printed PLA Specimens. Eng. Fract. Mech. 2022, 274, 108766. https://doi.org/10.1016/j.engfracmech.2022.108766.
  • 77.
    Ćwikła, G.; Grabowik, C.; Kalinowski, K.; et al. The Influence of Printing Parameters on Selected Mechanical Properties of FDM/FFF 3D-Printed Parts. IOP Conf. Ser. Mater. Sci. Eng. 2017, 227, 012033. https://doi.org/10.1088/1757-899X/227/1/012033.
  • 78.
    Rodríguez-Reyna, S.L.; Mata, C.; Díaz-Aguilera, J.H.; et al. Mechanical Properties Optimization for PLA, ABS and Nylon + CF Manufactured by 3D FDM Printing. Mater. Today Commun. 2022, 33, 104774. https://doi.org/10.1016/j.mtcomm.2022.104774.
  • 79.
    Cojocaru, V.; Frunzaverde, D.; Miclosina, C.-O.; et al. The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication—A Review. Polymers 2022, 14, 886. https://doi.org/10.3390/polym14050886.
  • 80.
    The Effect of Processing Parameters on the Mechanical Characteristics of PLA Produced by a 3D FFF Printer|The International Journal of Advanced Manufacturing Technology. Available online: https://link.springer.com/article/10.1007/s00170-020-06138-4 (accessed on 11 November 2025).
  • 81.
    Peterlin, A. Tensile Failure of Crystalline Polymers. J. Macromol. Sci. Part B 1981, 19, 401–419. https://doi.org/10.1080/00222348108015311.
Share this article:
How to Cite
Delgado Ramos, K. L.; Moreno, S.; Bustamante, O.; Roberson, D. A. Evaluating the Ability of Additively Manufactured Polyester Blends to Thermally Recover from Organic Chemical Exposure. Journal of Innovations in Materials and Manufacturing Engineering 2026, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.