- 1.
ISO/ASTM 52900:2021(E); Additive Manufacturing—General Principles—Fundamentals and Vocabulary. IOF Standardization: Geneva, Switzerland, 2021. Available:
https://www.iso.org/standard/74514.html (accessed on 1 October 2025).
- 2.
Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 1-Introduction and Basic Principles. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–21.
- 3.
- 4.
Tamez, M.B.A.; Taha, I. A review of additive manufacturing technologies and markets for thermosetting resins and their potential for carbon fiber integration. Addit. Manuf. 2021, 37, 101748.
https://doi.org/10.1016/j.addma.2020.101748.
- 5.
- 6.
- 7.
- 8.
Zhang, K.; Meng, Q.; Zhang, X.; et al. Quantitative characterization of defects in stereolithographic additive manufactured ceramic using X-ray computed tomography. J. Mater. Sci. Technol. 2022, 118, 144–157.
https://doi.org/10.1016/j.jmst.2021.11.060.
- 9.
Yang, Y.; Li, X.; Chu, M.; et al. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Sci. Adv. 2019, 5, eaau9490,
https://doi.org/10.1126/sciadv.aau9490.
- 10.
- 11.
Zhang, X.; Zhang, K.; Zhang, L.; et al. Additive manufacturing of cellular ceramic structures: From structure to structure–function integration. Mater. Des. 2022, 215, 110470.
https://doi.org/10.1016/j.matdes.2022.110470.
- 12.
- 13.
Pelanconi, M.; Barbato, M.; Zavattoni, S.; et al. Thermal design, optimization and additive manufacturing of ceramic regular structures to maximize the radiative heat transfer. Mater. Des. 2019, 163, 107539.
https://doi.org/10.1016/j.matdes.2018.107539.
- 14.
- 15.
Paredes, C.; Martínez-Vázquez, F.J.; Pajares, A.; et al. Co-continuous calcium phosphate/polycaprolactone composite bone scaffolds fabricated by digital light processing and polymer melt suction. Ceram. Int. 2021, 47, 17726–17735.
https://doi.org/10.1016/j.ceramint.2021.03.093.
- 16.
Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 8-Binder Jetting. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 237–252.
- 17.
Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 10-Directed Energy Deposition. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 285–318.
- 18.
Guimarães, R.P.M.; Pixner, F.; Enzinger, N.; et al. Chapter 2-Directed energy deposition processes and process design by artificial intelligence. In Advances in Metal Additive Manufacturing; Salunkhe, S., Amancio-Filho, S.T., Davim, J.P., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 105–146.
- 19.
Li, J.C.; Lin, X.; Kang, N.; et al. Microstructure, tensile and wear properties of a novel graded Al matrix composite prepared by direct energy deposition. J. Alloys Compd. 2020, 826, 154077.
https://doi.org/10.1016/j.jallcom.2020.154077.
- 20.
- 21.
Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 6-Material Extrusion. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 171–201.
- 22.
Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 7-Material Jetting. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 203–235.
- 23.
Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 9-Sheet Lamination. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 253–283.
- 24.
Gibson, I.; Rosen, D.; Stucker, B.; et al. Chapter 4-Vat Photopolymerization. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 77–124.
- 25.
ASTM D 3878-16; Standard Terminology for Composite Materials. A. International: Harrisburg, PA, USA, 2016.
- 26.
- 27.
Adams, R.D.; Collins, A.; Cooper, D.; et al. Recycling of reinforced plastics. In Structural Integrity and Durability of Advanced Composites; Beaumont, P.W.R., Soutis, C., Hodzic, A., Eds.; Woodhead Publishing: Sawston, UK, 2015; pp. 763–792.
- 28.
Rajak, D.K.; Pagar, D.D.; Kumar, R.; et al. Recent progress of reinforcement materials: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2019, 8, 6354–6374.
https://doi.org/10.1016/j.jmrt.2019.09.068.
- 29.
Harper, L.; Clifford, M. 1-Introduction. In Design and Manufacture of Structural Composites; Harper, L., Clifford, M., Eds.; Woodhead Publishing: Sawston, UK, 2023; pp. 3–17.
- 30.
Miracle, D.B.; Committee, A.I.H.; Donaldson, S.L. ASM Handbook Composites, 10th ed.; ASM International: Almere, The Netherlands, 2001.
- 31.
Yang, J.; Li, B.; Liu, J.; et al. Application of Additive Manufacturing in the Automobile Industry: A Mini Review. Processes 2024, 12, 1101.
- 32.
Chattopadhyay, S.; Mahapatra, S.D.; Mandal, N.K. Advancements and challenges in additive manufacturing: A comprehensive review. Eng. Res. Express 2024, 6, 012505.
https://doi.org/10.1088/2631-8695/ad30b1.
- 33.
- 34.
- 35.
- 36.
Chang, B.; Parandoush, P.; Li, X.; et al. Ultrafast printing of continuous fiber-reinforced thermoplastic composites with ultrahigh mechanical performance by ultrasonic-assisted laminated object manufacturing. Polym. Compos. 2020, 41, 4706–4715.
https://doi.org/10.1002/pc.25744.
- 37.
Bai, J.; Sun, J.; Binner, J. Chapter 7-Additive Manufacturing of Ceramics: Materials, Characterization and Applications. In Additive Manufacturing: Materials, Functionalities and Applications; Zhou, K., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 245–331.
- 38.
- 39.
Brown, J.H.; Colton, J.S. A machine system for the rapid production of composite structures. Polym. Compos. 2000, 21, 124–133.
https://doi.org/10.1002/pc.10171.
- 40.
- 41.
Razavykia, A.; Brusa, E.; Delprete, C.; et al. An Overview of Additive Manufacturing Technologies—A Review to Technical Synthesis in Numerical Study of Selective Laser Melting. Materials 2020, 13, 3895.
- 42.
Klosterman, D.A.; Chartoff, R.P.; Agarwala, M.K.; et al. Direct Fabrication of Polymer Composite Structures with Curved LOM; The University of Texas at Austin: Austin, TX, USA, 1999.
- 43.
Klosterman, D.; Chartoff, R.; Graves, G.; et al. Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos. Part A Appl. Sci. Manuf. 1998, 29, 1165–1174.
https://doi.org/10.1016/S1359-835X(98)00088-8.
- 44.
- 45.
- 46.
- 47.
- 48.
Thomason, J.L. The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1641–1652.
https://doi.org/10.1016/S1359-835X(02)00179-3.
- 49.
Matsuzaki, R.; Ueda, M.; Namiki, M.; et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 2016, 6, 23058.
https://doi.org/10.1038/srep23058.
- 50.
Demoly, F.; André, J.-C. 8-3D stereolithography of polymer matrix composites. In Additive Manufacturing of Polymer-Based Composite Materials; Touchard, F., Sarasini, F., Eds.; Woodhead Publishing: Sawston, UK, 2024; pp. 247–280.
- 51.
- 52.
- 53.
Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 2014, 20, 192–204.
https://doi.org/10.1108/RPJ-01-2013-0012.
- 54.
- 55.
Acierno, D.; Patti, A. Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties—An Overview. Materials 2023, 16, 7664.
- 56.
Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 2020, 12, 1529.
- 57.
Dinwiddie, R.; Kunc, V.; Lindal, J.; et al. Infrared Imaging of the Polymer 3D-Printing Process. SPIE 2014, 9105, 910502.
- 58.
Safari, F.; Kami, A.; Abedini, V. 3D printing of continuous fiber reinforced composites: A review of the processing, pre- and post-processing effects on mechanical properties. Polym. Polym. Compos. 2022, 30, 09673911221098734.
https://doi.org/10.1177/09673911221098734.
- 59.
- 60.
- 61.
- 62.
- 63.
Tian, X.; Todoroki, A.; Liu, T.; et al. 3D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100016.
https://doi.org/10.1016/j.cjmeam.2022.100016.
- 64.
- 65.
- 66.
- 67.
- 68.
Shofner, M.L.; Lozano, K.; Rodríguez-Macías, F.J.; et al. Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 2003, 89, 3081–3090.
https://doi.org/10.1002/app.12496.
- 69.
Farahani, R.D.; Therriault, D.; Dubé, M.; et al. 6.13 Additive Manufacturing of Multifunctional Nanocomposites and Composites. In Comprehensive Composite Materials II; Beaumont, P.W.R., Zweben, C.H., Eds.; Elsevier: Oxford, UK, 2018; pp. 380–407.
- 70.
Ziegmann, G.; Oehl, G.; Hefft, L.T. 1-Recent trends in “conventional” manufacturing of composites. In Additive Manufacturing of Polymer-Based Composite Materials; Touchard, F., Sarasini, F., Eds.; Woodhead Publishing: Sawston, UK, 2024; pp. 1–36.
- 71.
Cicala, G.; Tosto, C. 2-Optimization of fused deposition modeling for short fiber reinforced composites. In Additive Manufacturing of Polymer-Based Composite Materials; Touchard, F., Sarasini, F., Eds.; Woodhead Publishing: Sawston, UK, 2024; pp. 37–79.
- 72.
Melenka, G.W.; Cheung, B.K.O.; Schofield, J.S.; et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos. Struct. 2016, 153, 866–875.
https://doi.org/10.1016/j.compstruct.2016.07.018.
- 73.
- 74.
Zak, G.; Sela, M.N.; Yevko, V.; et al. Layered-Manufacturing of Fiber-Reinforced Composites. J. Manuf. Sci. Eng. 1999, 121, 448–456.
https://doi.org/10.1115/1.2832702.
- 75.
Niendorf, K.; Raeymaekers, B. Additive Manufacturing of Polymer Matrix Composite Materials with Aligned or Organized Filler Material: A Review. Adv. Eng. Mater. 2021, 23, 2001002.
https://doi.org/10.1002/adem.202001002.
- 76.
- 77.
Murphy, C.A.; Lim, K.S.; Woodfield, T.B.F. Next Evolution in Organ-Scale Biofabrication: Bioresin Design for Rapid High-Resolution Vat Polymerization. Adv. Mater. 2022, 34, 2107759.
https://doi.org/10.1002/adma.202107759.
- 78.
Novotny, J.; Svobodova, Z.; Ilicova, M.; et al. Advantages of stereolithographic 3D printing in the fabrication of the Affiblot device for dot-blot assays. Microchim. Acta 2024, 191, 442.
https://doi.org/10.1007/s00604-024-06512-z.
- 79.
Caussin, E.; Moussally, C.; Le Goff, S.; et al. Vat Photopolymerization 3D Printing in Dentistry: A Comprehensive Review of Actual Popular Technologies. Materials 2024, 17, 950.
- 80.
Paral, S.K.; Lin, D.-Z.; Cheng, Y.-L.; et al. A Review of Critical Issues in High-Speed Vat Photopolymerization. Polymers 2023, 15, 2716.
- 81.
Khanlar, L.N.; Barmak, A.B.; Oh, Y.; et al. Marginal and internal discrepancies associated with carbon digital light synthesis additively manufactured interim crowns. J. Prosthet. Dent. 2023, 130, e101–e108.
https://doi.org/10.1016/j.prosdent.2023.04.007.
- 82.
Santoliquido, O.; Camerota, F.; Ortona, A. The influence of topology on DLP 3D printing, debinding and sintering of ceramic periodic architectures designed to replace bulky components. Open Ceram. 2021, 5, 100059.
https://doi.org/10.1016/j.oceram.2021.100059.
- 83.
- 84.
Schittecatte, L.; Geertsen, V.; Bonamy, D.; et al. From resin formulation and process parameters to the final mechanical properties of 3D printed acrylate materials. MRS Commun. 2023, 13, 357–377.
https://doi.org/10.1557/s43579-023-00352-3.
- 85.
Waheed, S.; Cabot, J.M.; Macdonald, N.P.; et al. 3D printed microfluidic devices: Enablers and barriers. Lab A Chip 2016, 16, 1993–2013.
https://doi.org/10.1039/C6LC00284F.
- 86.
Mukhangaliyeva, A.; Dairabayeva, D.; Perveen, A.; et al. Optimization of Dimensional Accuracy and Surface Roughness of SLA Patterns and SLA-Based IC Components. Polymers 2023, 15, 4038.
- 87.
Milovanović, A.; Milošević, M.; Mladenović, G.; et al. Experimental Dimensional Accuracy Analysis of Reformer Prototype Model Produced by FDM and SLA 3D Printing Technology. In Proceedings of the Experimental and Numerical Investigations in Materials Science and Engineering, Cham, Switzerland, 1 January 2018; pp. 84–95.
- 88.
He, F.; Khan, M. Effects of Printing Parameters on the Fatigue Behaviour of 3D-Printed ABS under Dynamic Thermo-Mechanical Loads. Polymers 2021, 13, 2362.
- 89.
Zhu, W.; Yan, C.; Shi, Y.; et al. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites. Sci. Rep. 2016, 6, 33780.
https://doi.org/10.1038/srep33780.
- 90.
- 91.
- 92.
Cheah, C.M.; Fuh, J.Y.H.; Nee, A.Y.C.; et al. Mechanical characteristics of fiber-filled photo-polymer used in stereolithography. Rapid Prototyp. J. 1999, 5, 112–119.
https://doi.org/10.1108/13552549910278937.
- 93.
Vaneetveld, G.; Clarinval, A.M.; Dormal, T.; et al. Optimization of the formulation and post-treatment of stainless steel for rapid manufacturing. J. Mater. Process. Technol. 2008, 196, 160–164.
https://doi.org/10.1016/j.jmatprotec.2007.05.017.
- 94.
Gupta, A.; Ogale, A.A. Dual curing of carbon fiber reinforced photoresins for rapid prototyping. Polym. Compos. 2002, 23, 1162–1170.
https://doi.org/10.1002/pc.10509.
- 95.
- 96.
- 97.
Chen, X.; Sun, J.; Guo, B.; et al. Effect of the particle size on the performance of BaTiO3 piezoelectric ceramics produced by additive manufacturing. Ceram. Int. 2022, 48, 1285–1292.
https://doi.org/10.1016/j.ceramint.2021.09.213.
- 98.
Zeng, Q.; Yang, C.; Tang, D.; et al. Additive manufacturing alumina components with lattice structures by digital light processing technique. J. Mater. Sci. Technol. 2019, 35, 2751–2755.
https://doi.org/10.1016/j.jmst.2019.08.001.
- 99.
Uiiah, I.; Cao, L.; Cui, W.; et al. Stereolithography printing of bone scaffolds using biofunctional calcium phosphate nanoparticles. J. Mater. Sci. Technol. 2021, 88, 99–108.
https://doi.org/10.1016/j.jmst.2021.01.062.
- 100.
- 101.
Safarian, A.; Subaşi, M.; Karataş, Ç. Reducing debinding time in thick components fabricated by powder injection molding. Presented at “7th International Powder Metallurgy Conference and Exhibition” (TPM-7), Gazi University, Ankara, Turkey. 24–28 June 2014.
https://doi.org/10.3139/146.111212.
- 102.
Dietrich, K.; Diller, J.; Dubiez-Le Goff, S.; et al. The influence of oxygen on the chemical composition and mechanical properties of Ti-6Al-4V during laser powder bed fusion (L-PBF). Addit. Manuf. 2020, 32, 100980.
https://doi.org/10.1016/j.addma.2019.100980.
- 103.
- 104.
Zhuo, P.; Li, S.; Ashcroft, I.A.; et al. Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook. Compos. Part B Eng. 2021, 224, 109143.
https://doi.org/10.1016/j.compositesb.2021.109143.
- 105.
Zak, G.; Chan, A.Y.F.; Park, C.B.; et al. Viscosity analysis of photopolymer and glass-fibre composites for rapid layered manufacturing. Rapid Prototyp. J. 1996, 2, 16–23.
https://doi.org/10.1108/13552549610129773.
- 106.
Xiao, J.; Li, M.; Li, S.; et al. High-fidelity random fiber distribution algorithm based on fiber spreading process. Polym. Compos. 2023, 44, 4669–4681.
https://doi.org/10.1002/pc.27430.
- 107.
Laurencin, T.; Dumont, P.J.J.; Orgéas, L.; et al. 3D real time and in situ observation of the fibre orientation during the plane strain flow of concentrated fibre suspensions. J. Non-Newton. Fluid Mech. 2023, 312, 104978.
https://doi.org/10.1016/j.jnnfm.2022.104978.
- 108.
Kruth, J.P.; Mercelis, P.; Van Vaerenbergh, J.; et al. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2005, 11, 26–36.
https://doi.org/10.1108/13552540510573365.
- 109.
- 110.
Yehia, H.M.; Hamada, A.; Sebaey, T.A.; et al. Selective Laser Sintering of Polymers: Process Parameters, Machine Learning Approaches, and Future Directions. J. Manuf. Mater. Process. 2024, 8, 197.
- 111.
Tiwari, S.K.; Pande, S.; Agrawal, S.; et al. Selection of selective laser sintering materials for different applications. Rapid Prototyp. J. 2015, 21, 630–648.
https://doi.org/10.1108/RPJ-03-2013-0027.
- 112.
- 113.
Chua, C.K.; Leong, K.F.; Lim, C.S. Rapid Prototyping: Principles and Applications, 3rd ed.; World Scientific Publishing Company: Singapore, 2010.
- 114.
- 115.
Wiria, F.E.; Leong, K.F.; Chua, C.K.; et al. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater. 2007, 3, 1–12.
https://doi.org/10.1016/j.actbio.2006.07.008.
- 116.
Khan, H.; Tarakçı, G.; Bulduk, M.; et al. Estimation of the compression strength and surface roughness of the as-built SLS components using weibull distribution. J. Adv. Manuf. Eng. 2021, 2, 1–6.
https://doi.org/10.14744/ytu.jame.2021.00001.
- 117.
Kabore, B.W.; Estupinan Donoso, A.A.; Peters, B.; et al. Identification of optimal process parameters in selective laser sintering. In Proceedings of the International Conference on Simulation for Additive Manufacturing-Sim-AM, Pavia, Italy, 13 November 2019.
- 118.
Tan, K.H.; Chua, C.K.; Leong, K.F.; et al. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 2003, 24, 3115–3123.
https://doi.org/10.1016/S0142-9612(03)00131-5.
- 119.
- 120.
- 121.
Yuan, S.; Zheng, Y.; Chua, C.K.; et al. Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Compos. Part A Appl. Sci. Manuf. 2018, 105, 203–213.
https://doi.org/10.1016/j.compositesa.2017.11.007.
- 122.
Razaviye, M.K.; Tafti, R.A.; Khajehmohammadi, M. An investigation on mechanical properties of PA12 parts produced by a SLS 3D printer: An experimental approach. CIRP J. Manuf. Sci. Technol. 2022, 38, 760–768.
https://doi.org/10.1016/j.cirpj.2022.06.016.
- 123.
- 124.
- 125.
- 126.
- 127.
- 128.
Exner, H.; Horn, M.; Streek, A.; et al. Laser micro sintering: A new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. Virtual Phys. Prototyp. 2008, 3, 3–11.
https://doi.org/10.1080/17452750801907970.
- 129.
- 130.
- 131.
- 132.
Sebbe, N.P.V.; Fernandes, F.; Sousa, V.F.C.; et al. Hybrid Manufacturing Processes Used in the Production of Complex Parts: A Comprehensive Review. Metals 2022, 12, 1874–1894.
- 133.
Vityaz, P.A.; Kheifetz, M.L.; Chizhik, S.A. 20-Synergetic technologies of direct layer deposition in aerospace additive manufacturing. In Additive Manufacturing for the Aerospace Industry; Froes, F., Boyer, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 427–447.
- 134.
- 135.
Sibisi, P.N.; Popoola, A.P.I.; Arthur, N.K.K.; et al. Review on direct metal laser deposition manufacturing technology for the Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 2020, 107, 1163–1178.
https://doi.org/10.1007/s00170-019-04851-3.
- 136.
Ortiz, I.; Alvarez, P.; Montealegre, M.A. Laser Metal Deposition (LMD) Toolpaths with Adaptive Capability for Complex Repairs and Coating Geometries. Key Eng. Mater. 2022, 934, 59–66.
https://doi.org/10.4028/p-54tx42.
- 137.
Kliner, D.; Farrow, R.; Lugo, J.; et al. Advanced Metal Processing Enabled by Fiber Lasers with Tunable Beam Properties; SPIE: Bellingham, WA, USA, 2022; Volume 11981.
- 138.
Thompson, S.M.; Bian, L.; Shamsaei, N.; et al. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit. Manuf. 2015, 8, 36–62.
https://doi.org/10.1016/j.addma.2015.07.001.
- 139.
Pereira, J.C.; Aguilar, D.; Tellería, I.; et al. Semi-Continuous Functionally Graded Material Austenitic to Super Duplex Stainless Steel Obtained by Laser-Based Directed Energy Deposition. J. Manuf. Mater. Process. 2023, 7, 150.
- 140.
- 141.
Karimzadeh, M.; Basvoju, D.; Vakanski, A.; et al. Machine Learning for Additive Manufacturing of Functionally Graded Materials. Materials 2024, 17, 3673.
- 142.
- 143.
- 144.
- 145.
Mao, B.; Siddaiah, A.; Liao, Y.; et al. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. J. Manuf. Process. 2020, 53, 153–173.
https://doi.org/10.1016/j.jmapro.2020.02.009.
- 146.
Saboori, A.; Aversa, A.; Marchese, G.; et al. Application of Directed Energy Deposition-Based Additive Manufacturing in Repair. Appl. Sci. 2019, 9, 3316.
- 147.
- 148.
- 149.
Kanishka, K.; Acherjee, B. A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration. J. Manuf. Process. 2023, 89, 220–283.
https://doi.org/10.1016/j.jmapro.2023.01.034.
- 150.
Najmon, J.C.; Raeisi, S.; Tovar, A. 2-Review of additive manufacturing technologies and applications in the aerospace industry. In Additive Manufacturing for the Aerospace Industry; Froes, F., Boyer, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 7–31.
- 151.
Humarán-Sarmiento, V.; Martínez-Franco, E.; Félix-Martínez, C.; et al. Directed energy deposition of stellite 6/WC-12Co metal matrix composite. Surf. Coat. Technol. 2024, 488, 131021.
https://doi.org/10.1016/j.surfcoat.2024.131021.
- 152.
Shalnova, S.A.; Volosevich, D.V.; Sannikov, M.I.; et al. Direct energy deposition of SiC reinforced Ti–6Al–4V metal matrix composites: Structure and mechanical properties. Ceram. Int. 2022, 48, 35076–35084.
https://doi.org/10.1016/j.ceramint.2022.08.097.
- 153.
- 154.
Wang, L.; Guo, Y.; Chen, Y.; et al. Microstructure and wear properties of carbon nanotubes reinforced WE43 composite coating fabricated by laser directed energy deposition. Surf. Coat. Technol. 2024, 476, 130287.
https://doi.org/10.1016/j.surfcoat.2023.130287.
- 155.
Pedroso, A.F.V.; Sebbe, N.P.V.; Silva, F.J.G.; et al. An In-Depth Exploration of Unconventional Machining Techniques for INCONEL® Alloys. Materials 2024, 17, 1197.
- 156.
Guan, C.; Yu, T.; Zhao, Y.; et al. Repair of Gear by Laser Cladding Ni60 Alloy Powder: Process, Microstructure and Mechanical Performance. Appl. Sci. 2023, 13, 319.
- 157.
Arlyapov, A.; Volkov, S.; Promakhov, V.; et al. Study of the Machinability of an Inconel 625 Composite with Added NiTi-TiB2 Fabricated by Direct Laser Deposition. Metals 2022, 12, 1956.
- 158.
Pedroso, A.F.V.; Sousa, V.F.C.; Sebbe, N.P.V.; et al. A Review of INCONEL® Alloy’s Non-conventional Machining Processes. In Proceedings of the Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems, Cham, Switzerland, 18–22 June 2024; pp. 773–783.
- 159.
Costa, R.D.F.S.; Sales-Contini, R.C.M.; Silva, F.J.G.; et al. A Critical Review on Fiber Metal Laminates (FML): From Manufacturing to Sustainable Processing. Metals 2023, 13, 638.
- 160.