2506000703
  • Open Access
  • Article
Innovative Approaches to Enhance Thermal Efficiency and Reduce Sprue Backflow in Zamak Hot Chamber Injection Moulding
  • Rita de Cássia Mendonça Sales-Contini 1, 2, *,   
  • André Filipe Varandas Pedroso 1,   
  • Pedro Leitão 1,   
  • Rafael Resende Lucas 1, 3,   
  • Raul Duarte Salgueiral Gomes Campilho 1,   
  • Arnaldo Gomes Pinto 1,   
  • Carlos Roberto Regattieri 1, 4

Received: 05 May 2025 | Revised: 20 May 2025 | Accepted: 28 May 2025 | Published: 03 Jun 2025

Abstract

This study uses a Design Science Research (DSR) approach to improve the thermal performance of an injection nozzle for die-casting Zamak components. This involves identifying the problem, creating an iterative design and simulation, implementing solutions and evaluating them through computational and experimental validation. A combination of computational fluid dynamics (CFD) simulations and thermal modelling in SolidWorks Flow Simulation was used to analyse temperature distributions and identify geometric modifications aimed at reducing heat loss and preventing solidification within the nozzle. Key results include the development of a modified nozzle design featuring reduced length and optimised channel diameters, which has led to improved thermal efficiency. Experimental validation using temperature measurements near the nozzle tip demonstrated close agreement with simulation predictions, confirming the efficacy of the optimised design. The findings conclude that strategic geometric alterations and refined modelling assumptions can significantly improve heat retention, ensuring more reliable Zamak injection processes.

References 

  • 1.
    Williamson, R. Exchange rate exposure and competition: Evidence from the automotive industry. J. Financ. Econ. 2001, 59, 441–475. https://doi.org/10.1016/S0304-405X(00)00093-3.
  • 2.
    Pichler, M.; Krenmayr, N.; Schneider, E.; et al. EU industrial policy: Between modernisation and transformation of the automotive industry. Environ. Innov. Soc. Transit. 2021, 38, 140–152. https://doi.org/10.1016/j.eist.2020.12.002.
  • 3.
    Costa, R.J.S.; Silva, F.J.G.; Campilho, R.D.S.G. A novel concept of agile assembly machine for sets applied in the automotive industry. Int. J. Adv. Manuf. Technol. 2017, 91, 4043–4054. https://doi.org/10.1007/s00170-017-0109-4.
  • 4.
    Oduguwa, P.A.; Roy, R.; Sackett, P.J. Cost impact analysis of requirement changes in the automotive industry: A case study. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006, 220, 1509–1525. https://doi.org/10.1243/09544054JEM275.
  • 5.
    Kabak, O.; Ülengin, F.; Önsel, S.; et al. Cumulative belief degrees approach for analysing the competitiveness of the automotive industry. Knowl. Based Syst. 2014, 70, 15–25. https://doi.org/10.1016/j.knosys.2013.09.006.
  • 6.
    Sarkar, M.; Park, K.S. Reduction of makespan through flexible production and remanufacturing to maintain the multi-stage automated complex production system. Comput. Ind. Eng. 2023, 177, 108993. https://doi.org/10.1016/j.cie.2023.108993.
  • 7.
    Costa, M.J.R.; Gouveia, R.M.; Silva, F.J.G.; et al. How to solve quality problems by advanced fully-automated manufacturing systems. Int. J. Adv. Manuf. Technol. 2018, 94, 3041–3063. https://doi.org/10.1007/s00170-017-0158-8.
  • 8.
    Rosa, C.; Silva, F.J.G.; Ferreira, L.P. Improving the quality and productivity of steel wire-rope assembly lines for the automotive industry. Procedia Manuf. 2017, 11, 1035–1042. https://doi.org/10.1016/j.promfg.2017.07.214.
  • 9.
    Moreira, B.M.D.N.; Gouveia, R.M.; Silva, F.J.G.; et al. A novel concept of production and assembly processes integration. Procedia Manuf. 2017, 11, 1385–1395. https://doi.org/10.1016/j.promfg.2017.07.268.
  • 10.
    Zhang, X.; Ming, X.; Bao, Y. A flexible smart manufacturing system in mass personalisation manufacturing model based on multi-module-platform, multi-virtual-unit, and multi-production-line. Comput. Ind. Eng. 2022, 171, 108379. https://doi.org/10.1016/j.cie.2022.108379.
  • 11.
    Pekaric, I.; Sauerwein, C.; Haselwanter, S.; et al. A taxonomy of attack mechanisms in the automotive domain. Comp. Stand. Interf. 2021, 78, 103539. https://doi.org/10.1016/j.csi.2021.103539.
  • 12.
    Van Straten, B.; Tantuo, B.; Dankelman, J.; et al. eprocessing Zamak laryngoscope blades into new instrument parts; an ‘all-in-one’ experimental study. Heliyon 2022, 8, e11711. https://doi.org/10.1016/j.heliyon.2022.e11711.
  • 13.
    Wang, J.; Meng, B.; Zhang, L.; et al. Degradation modeling and reliability estimation for mechanical transmission mechanism considering the clearance between kinematic pairs. Reliab. Eng. Syst. Saf. 2024, 247, 110093. https://doi.org/10.1016/j.ress.2024.110093.
  • 14.
    Eiras, E.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. A Novel Fully Automatic Concept to Produce First Subset of Bowden Cables, Improving Productivity, Flexibility, and Safety. Machines 2023, 11, 992. https://doi.org/10.3390/machines11110992.
  • 15.
    Du, H.; Jiang, Q.; Xiong, W. Computer-assisted assembly process planning for the installation of flexible cables modeled according to a viscoelastic Cosserat rod model. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 1737–1747. https://doi.org/10.1177/09544054221136000.
  • 16.
    Vieira, D.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. Automating Equipment towards Industry 4.0: A New Concept for a Transfer System of Lengthy and Low-Stiffness Products for Automobiles. J. Test. Eval. 2022, 50, 2310–2325. https://doi.org/10.1520/JTE20210721.
  • 17.
    Treiber, W.G., Jr. Enhanced product design with hot-chamber magnesium die casting. Mats. Des. 1987, 8, 350–353. https://doi.org/10.1016/j.matpr.2020.11.346.
  • 18.
    Li, T.; Song, J.; Zhang, A.; et al. Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components. J. Mg Alloys 2023, 11, 4166–4180. https://doi.org/10.1016/j.jma.2023.11.003.
  • 19.
    Fu, M.W.; Zheng, J.-Y. Die Casting for Fabrication of Metallic Components and Structures. Encyc. Mat. Metals Alloys 2022, 4, 54–72. https://doi.org/10.1016/B978-0-12-819726-4.00037-5.
  • 20.
    Wang, H.; Djambazov, G.; Pericleous, K.A.; et al. Modelling the dynamics of the tilt-casting process and the effect of the mould design on the casting quality. Comp. Fluids 2010, 42, 92–101. https://doi.org/10.1016/j.compfluid.2010.11.010.
  • 21.
    Pereira, J.L.T.A.; Campilho, R.D.S.G.; Silva, F.J.G.; et al. Improving the Efficiency of the Bowden Cable Terminal Injection Process for the Automotive Industry. Processes 2022, 10, 1953. https://doi.org/10.3390/pr10101953.
  • 22.
    Pinto, H.; Silva, F.J.G. Optimisation of Die Casting Process in Zamak Alloys. Procedia Manuf. 2017, 11, 517–525. https://doi.org/10.1016/j.promfg.2017.07.145.
  • 23.
    Silva, F.J.G.; Campilho, R.D.S.G.; Ferreira, L.P.; et al. Establishing Guidelines to Improve the High-Pressure Die Casting Process of Complex Aesthetics Parts. Transdiscipl. Eng. Methods Soc. Innov. Ind. 2018, 7, 887–896. https://doi.org/10.3233/978-1-61499-898-3-887.
  • 24.
    Pinto, H.A.; Silva, F.J.G.; Martinho, R.P.; et al. Improvement and validation of Zamak die casting moulds. Procedia Manuf. 2019, 38, 1547–1557. https://doi.org/10.1016/j.promfg.2020.01.131.
  • 25.
    Sousa, V.F.C.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. Developing a Novel Fully Automated Concept to Produce Bowden Cables for the Automotive Industry. Machines 2022, 10, 290. https://doi.org/10.3390/machines10050290.
  • 26.
    Olbrich, S.; Lackinger, J. Manufacturing Processes of automotive high-voltage wire harnesses: State of the art, current challenges and fields of action to reach a higher level of automation. Procedia CIRP 2022, 107, 653–660. https://doi.org/10.1016/j.procir.2022.05.041.
  • 27.
    Peffers, K.; Tuunanen, T.; Rothenberger, M.A.; et al. Positioning and presenting design science research for maximum impact. J. Manag. Inf. Syst. 2007, 24, 45–77. https://doi.org/10.25300/MISQ/2013/37.2.01.
  • 28.
    Hevner, A.; Gregor, S. Envisioning entrepreneurship and digital innovation through a design science research lens: A matrix approach. Inf. Manag. 2022, 59, 103350. https://doi.org/10.1016/j.im.2020.103350.
  • 29.
    Abdullah, O.I.; Abbood, W.T.; Hussein, H.K. Development of automated liquid filling system based on the interactive design approach. FME Trans. 2020, 48, 838–945. https://doi.org/10.5937/fme2004938A.
  • 30.
    Teixeira, J.G.; Patrício, L.; Huang, K.H.; et al. The MINDS Method: Integrating Management and Interaction Design Perspectives for Service Design. J. Serv. Res. 2017, 20, 240–258. https://doi.org/10.1177/1094670516680033.
  • 31.
    Devitt, F.; Robbins, P. Design, Thinking and Science. In Design Science: Perspectives from Europe; Helfert, M., Donnellan, B., Eds.; Springer: Cham, Switzerland, 2013. ISBN: 978-3-319-04089-9.
  • 32.
    Siedhoff, S. Design science research. In Seizing Business Model Patterns for Disruptive Innovations; Springer: Cham, Switzerland, 2019; pp. 29–43. ISBN 978-3658263355; ISBN: 978-3-658-26336-2.
  • 33.
    Lepenioti, K.; Bousdekis, A.; Apostolou, D.; et al. Prescriptive analytics: Literature review and research challenges. Int. J. Inf. Manag. 2020, 50, 57–70. https://doi.org/10.1016/j.ijinfomgt.2019.04.003.
  • 34.
    Tojal, M.C.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. Case-based product development of a high-pressure die casting injection subset using design science research. FME Trans. 2022, 50, 32–45. https://doi.org/10.5937/fme2201032T.
  • 35.
    Zhou, Z.; Tang, J.; Ding, H. Accurate modification methodology of universal machine tool settings for spiral bevel and hypoid gears. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 339–349. https://doi.org/10.1177/0954405416640173.
  • 36.
    Rosochowska, R.B.M. Measurements of thermal contact conductance. J. Mat. Proc. Techn. 2003, 135, 204–210. https://doi.org/10.1016/S0924-0136(02)00897-X.
  • 37.
    Burte, P.R.; Im, Y.-T.; Altan, T.; et al. Measurement and analysis of heat transfer and friction during hot forging. J. Manuf. Sci. Eng. 1990, 112, 332–339. https://doi.org/10.1115/1.2899596.
  • 38.
    Marcolin, P.; Longhi, M.; Zini, L.P.; et al. Effects of the Casting Temperature in the Leakage of Zamak 5. Mat. Sci. Forum 2017, 899, 458–462. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.899.458.
  • 39.
    Salman, A.S.; Abdulrazzaq, N.M.; Oudah, S.K.; et al. Experimental investigation of the impact of geometrical surface modification on spray cooling heat transfer performance in the non-boiling regime. Int. J. Heat Mass Transf. 2019, 133, 330–340, https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.12.058.
  • 40.
    Chen, J. Injection Nozzle with Enhanced Heat Transfer Characteristics. U.S. Patent 8,475,157, 2 July 2013.
  • 41.
    Saifullah, A.B.M.; Masood, S.H.; Sbarski, I. Thermal-structural finite element analysis of injection moulding dies with optimized cooling channels. Sci. Forum 2010, 654–656, 1646–1649, https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.654-656.1646.
Share this article:
How to Cite
Sales-Contini, R. d. C. M.; Pedroso, A. F. V.; Leitão, P.; Lucas, R. R.; Campilho, R. D. S. G.; Pinto, A. G.; Regattieri, C. R. Innovative Approaches to Enhance Thermal Efficiency and Reduce Sprue Backflow in Zamak Hot Chamber Injection Moulding. Journal of Mechanical Engineering and Manufacturing 2025, 1 (1), 4. https://doi.org/10.53941/jmem.2025.100004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.