- 1.
Williamson, R. Exchange rate exposure and competition: Evidence from the automotive industry. J. Financ. Econ. 2001, 59, 441–475. https://doi.org/10.1016/S0304-405X(00)00093-3.
- 2.
Pichler, M.; Krenmayr, N.; Schneider, E.; et al. EU industrial policy: Between modernisation and transformation of the automotive industry. Environ. Innov. Soc. Transit. 2021, 38, 140–152. https://doi.org/10.1016/j.eist.2020.12.002.
- 3.
Costa, R.J.S.; Silva, F.J.G.; Campilho, R.D.S.G. A novel concept of agile assembly machine for sets applied in the automotive industry. Int. J. Adv. Manuf. Technol. 2017, 91, 4043–4054. https://doi.org/10.1007/s00170-017-0109-4.
- 4.
Oduguwa, P.A.; Roy, R.; Sackett, P.J. Cost impact analysis of requirement changes in the automotive industry: A case study. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2006, 220, 1509–1525. https://doi.org/10.1243/09544054JEM275.
- 5.
Kabak, O.; Ülengin, F.; Önsel, S.; et al. Cumulative belief degrees approach for analysing the competitiveness of the automotive industry. Knowl. Based Syst. 2014, 70, 15–25. https://doi.org/10.1016/j.knosys.2013.09.006.
- 6.
Sarkar, M.; Park, K.S. Reduction of makespan through flexible production and remanufacturing to maintain the multi-stage automated complex production system. Comput. Ind. Eng. 2023, 177, 108993. https://doi.org/10.1016/j.cie.2023.108993.
- 7.
Costa, M.J.R.; Gouveia, R.M.; Silva, F.J.G.; et al. How to solve quality problems by advanced fully-automated manufacturing systems. Int. J. Adv. Manuf. Technol. 2018, 94, 3041–3063. https://doi.org/10.1007/s00170-017-0158-8.
- 8.
Rosa, C.; Silva, F.J.G.; Ferreira, L.P. Improving the quality and productivity of steel wire-rope assembly lines for the automotive industry. Procedia Manuf. 2017, 11, 1035–1042. https://doi.org/10.1016/j.promfg.2017.07.214.
- 9.
Moreira, B.M.D.N.; Gouveia, R.M.; Silva, F.J.G.; et al. A novel concept of production and assembly processes integration. Procedia Manuf. 2017, 11, 1385–1395. https://doi.org/10.1016/j.promfg.2017.07.268.
- 10.
Zhang, X.; Ming, X.; Bao, Y. A flexible smart manufacturing system in mass personalisation manufacturing model based on multi-module-platform, multi-virtual-unit, and multi-production-line. Comput. Ind. Eng. 2022, 171, 108379. https://doi.org/10.1016/j.cie.2022.108379.
- 11.
Pekaric, I.; Sauerwein, C.; Haselwanter, S.; et al. A taxonomy of attack mechanisms in the automotive domain. Comp. Stand. Interf. 2021, 78, 103539. https://doi.org/10.1016/j.csi.2021.103539.
- 12.
Van Straten, B.; Tantuo, B.; Dankelman, J.; et al. eprocessing Zamak laryngoscope blades into new instrument parts; an ‘all-in-one’ experimental study. Heliyon 2022, 8, e11711. https://doi.org/10.1016/j.heliyon.2022.e11711.
- 13.
Wang, J.; Meng, B.; Zhang, L.; et al. Degradation modeling and reliability estimation for mechanical transmission mechanism considering the clearance between kinematic pairs. Reliab. Eng. Syst. Saf. 2024, 247, 110093. https://doi.org/10.1016/j.ress.2024.110093.
- 14.
Eiras, E.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. A Novel Fully Automatic Concept to Produce First Subset of Bowden Cables, Improving Productivity, Flexibility, and Safety. Machines 2023, 11, 992. https://doi.org/10.3390/machines11110992.
- 15.
Du, H.; Jiang, Q.; Xiong, W. Computer-assisted assembly process planning for the installation of flexible cables modeled according to a viscoelastic Cosserat rod model. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 1737–1747. https://doi.org/10.1177/09544054221136000.
- 16.
Vieira, D.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. Automating Equipment towards Industry 4.0: A New Concept for a Transfer System of Lengthy and Low-Stiffness Products for Automobiles. J. Test. Eval. 2022, 50, 2310–2325. https://doi.org/10.1520/JTE20210721.
- 17.
Treiber, W.G., Jr. Enhanced product design with hot-chamber magnesium die casting. Mats. Des. 1987, 8, 350–353. https://doi.org/10.1016/j.matpr.2020.11.346.
- 18.
Li, T.; Song, J.; Zhang, A.; et al. Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components. J. Mg Alloys 2023, 11, 4166–4180. https://doi.org/10.1016/j.jma.2023.11.003.
- 19.
Fu, M.W.; Zheng, J.-Y. Die Casting for Fabrication of Metallic Components and Structures. Encyc. Mat. Metals Alloys 2022, 4, 54–72. https://doi.org/10.1016/B978-0-12-819726-4.00037-5.
- 20.
Wang, H.; Djambazov, G.; Pericleous, K.A.; et al. Modelling the dynamics of the tilt-casting process and the effect of the mould design on the casting quality. Comp. Fluids 2010, 42, 92–101. https://doi.org/10.1016/j.compfluid.2010.11.010.
- 21.
Pereira, J.L.T.A.; Campilho, R.D.S.G.; Silva, F.J.G.; et al. Improving the Efficiency of the Bowden Cable Terminal Injection Process for the Automotive Industry. Processes 2022, 10, 1953. https://doi.org/10.3390/pr10101953.
- 22.
Pinto, H.; Silva, F.J.G. Optimisation of Die Casting Process in Zamak Alloys. Procedia Manuf. 2017, 11, 517–525. https://doi.org/10.1016/j.promfg.2017.07.145.
- 23.
Silva, F.J.G.; Campilho, R.D.S.G.; Ferreira, L.P.; et al. Establishing Guidelines to Improve the High-Pressure Die Casting Process of Complex Aesthetics Parts. Transdiscipl. Eng. Methods Soc. Innov. Ind. 2018, 7, 887–896. https://doi.org/10.3233/978-1-61499-898-3-887.
- 24.
Pinto, H.A.; Silva, F.J.G.; Martinho, R.P.; et al. Improvement and validation of Zamak die casting moulds. Procedia Manuf. 2019, 38, 1547–1557. https://doi.org/10.1016/j.promfg.2020.01.131.
- 25.
Sousa, V.F.C.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. Developing a Novel Fully Automated Concept to Produce Bowden Cables for the Automotive Industry. Machines 2022, 10, 290. https://doi.org/10.3390/machines10050290.
- 26.
Olbrich, S.; Lackinger, J. Manufacturing Processes of automotive high-voltage wire harnesses: State of the art, current challenges and fields of action to reach a higher level of automation. Procedia CIRP 2022, 107, 653–660. https://doi.org/10.1016/j.procir.2022.05.041.
- 27.
Peffers, K.; Tuunanen, T.; Rothenberger, M.A.; et al. Positioning and presenting design science research for maximum impact. J. Manag. Inf. Syst. 2007, 24, 45–77. https://doi.org/10.25300/MISQ/2013/37.2.01.
- 28.
Hevner, A.; Gregor, S. Envisioning entrepreneurship and digital innovation through a design science research lens: A matrix approach. Inf. Manag. 2022, 59, 103350. https://doi.org/10.1016/j.im.2020.103350.
- 29.
Abdullah, O.I.; Abbood, W.T.; Hussein, H.K. Development of automated liquid filling system based on the interactive design approach. FME Trans. 2020, 48, 838–945. https://doi.org/10.5937/fme2004938A.
- 30.
Teixeira, J.G.; Patrício, L.; Huang, K.H.; et al. The MINDS Method: Integrating Management and Interaction Design Perspectives for Service Design. J. Serv. Res. 2017, 20, 240–258. https://doi.org/10.1177/1094670516680033.
- 31.
Devitt, F.; Robbins, P. Design, Thinking and Science. In Design Science: Perspectives from Europe; Helfert, M., Donnellan, B., Eds.; Springer: Cham, Switzerland, 2013. ISBN: 978-3-319-04089-9.
- 32.
Siedhoff, S. Design science research. In Seizing Business Model Patterns for Disruptive Innovations; Springer: Cham, Switzerland, 2019; pp. 29–43. ISBN 978-3658263355; ISBN: 978-3-658-26336-2.
- 33.
Lepenioti, K.; Bousdekis, A.; Apostolou, D.; et al. Prescriptive analytics: Literature review and research challenges. Int. J. Inf. Manag. 2020, 50, 57–70. https://doi.org/10.1016/j.ijinfomgt.2019.04.003.
- 34.
Tojal, M.C.; Silva, F.J.G.; Campilho, R.D.S.G.; et al. Case-based product development of a high-pressure die casting injection subset using design science research. FME Trans. 2022, 50, 32–45. https://doi.org/10.5937/fme2201032T.
- 35.
Zhou, Z.; Tang, J.; Ding, H. Accurate modification methodology of universal machine tool settings for spiral bevel and hypoid gears. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 339–349. https://doi.org/10.1177/0954405416640173.
- 36.
Rosochowska, R.B.M. Measurements of thermal contact conductance. J. Mat. Proc. Techn. 2003, 135, 204–210. https://doi.org/10.1016/S0924-0136(02)00897-X.
- 37.
Burte, P.R.; Im, Y.-T.; Altan, T.; et al. Measurement and analysis of heat transfer and friction during hot forging. J. Manuf. Sci. Eng. 1990, 112, 332–339. https://doi.org/10.1115/1.2899596.
- 38.
Marcolin, P.; Longhi, M.; Zini, L.P.; et al. Effects of the Casting Temperature in the Leakage of Zamak 5. Mat. Sci. Forum 2017, 899, 458–462. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.899.458.
- 39.
Salman, A.S.; Abdulrazzaq, N.M.; Oudah, S.K.; et al. Experimental investigation of the impact of geometrical surface modification on spray cooling heat transfer performance in the non-boiling regime. Int. J. Heat Mass Transf. 2019, 133, 330–340, https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.12.058.
- 40.
Chen, J. Injection Nozzle with Enhanced Heat Transfer Characteristics. U.S. Patent 8,475,157, 2 July 2013.
- 41.
Saifullah, A.B.M.; Masood, S.H.; Sbarski, I. Thermal-structural finite element analysis of injection moulding dies with optimized cooling channels. Sci. Forum 2010, 654–656, 1646–1649, https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.654-656.1646.