2506000747
  • Open Access
  • Review
Electrical Discharge Machining of Composites: A Critical Review of Challenges and Innovations
  • André F. V. Pedroso 1, 2, *,   
  • Rafael Lucas 1, 3,   
  • Luís Teixeira 1,   
  • Raul D. S. G. Campilho 1, 4,   
  • Arnaldo G. Pinto 1,   
  • Rúben D. F. S. Costa 2, 4,   
  • Rita de Cássia Mendonça Sales-Contini 1, 5

Received: 05 May 2025 | Revised: 20 May 2025 | Accepted: 28 May 2025 | Published: 16 Jun 2025

Abstract

Electrical Discharge Machining (EDM) is a critical non-conventional manufacturing technique for shaping electrically conductive materials, especially those with high hardness or complex geometries. Utilising thermal energy generated by controlled electrical discharges, EDM enables precise material removal without mechanical contact. This review systematically examines recent advancements in EDM with a focused lens on composite materials, specifically Metal-Matrix Composites (MMCs), Polymer-Matrix Composites (PMCs), and Ceramic-Matrix Composites (CMCs), which present distinct challenges due to their heterogeneous structure and limited machinability using conventional methods. This study investigates the influence of both electrical and non-electrical parameters on key performance indicators, including Material Removal Rate (MRR), Tool Wear Rate (TWR), and surface integrity. Notably, hybrid approaches such as Powder-Mixed EDM and cryogenic-assisted EDM demonstrate significant potential in enhancing machining performance and extending Tool Life (TL). By synthesising over two decades of research, this review identifies critical trends, technological innovations, and ongoing challenges in the EDM of composites. The findings emphasise the importance of parameter optimisation and novel dielectric modifications in advancing the efficiency, precision, and sustainability of EDM processes. This work provides a timely and comprehensive perspective on the evolving landscape of composite machining, outlining directions for future research in adaptive and hybrid EDM technologies.

References 

  • 1.
    Ho, K.H.; Newman, S.T. State of the art electsrical discharge machining (EDM). J. Mach. Tools Manuf. 2003, 43, 1287–1300.
  • 2.
    Teimouri, R.; Baseri, H. Optimization of magnetic field assisted EDM using the continuous ACO algorithm. Soft Comput. 2014, 14, 381–389.
  • 3.
    Pedroso, A.F.V.; Sousa, V.F.C.; Sebbe, N.P.V.; et al. In AReview of INCONEL® Alloy’s Non-Conventional Machining Processes, Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems; Silva, F.J.G., Pereira, A.B., Campilho, R.D.S.G.,; Springer Nature: Cham, Switzerland, 2024; pp. 773–783.
  • 4.
    Liu, L.; Thangaraj, M.; Karmiris-Obratański, P.; et al. Optimization of Wire EDM Process Parameters on Cutting Inconel 718 Alloy with Zinc-Diffused Coating Brass Wire Electrode Using Taguchi-DEAR Technique. Coatings2022, 12, 1612.
  • 5.
    Singh, S.; Bhardwaj, A. Review to EDM by Using Water and Powder-Mixed Dielectric Fluid. Miner. Mater. Charact. Eng. 2011, 10, 32.
  • 6.
    Singh, G.; Bhui, A.S.; Lamichhane, Y.; et al. Machining performance and influence of process parameters on stainless steel 316L using die-sinker EDM with Cu tool. Today Proc. 2019, 18, 2468–2476.
  • 7.
    Sudhakara, D.; Prasanthi, G. Application of Taguchi Method for Determining Optimum Surface Roughness in Wire Electric Discharge Machining of P/M Cold Worked Tool Steel (Vanadis-4E). Procedia 2014, 97, 1565–1576.
  • 8.
    Aspinwall, D.K.; Dewes, R.C.; Burrows, J.M.; et al. Hybrid High Speed Machining (HSM): System Design and Experimental Results for Grinding/HSM and EDM/HSM. CIRP 2001, 50, 145–148.
  • 9.
    Furutani, K.; Sato, H.; Suzuki, M. Influence of electrical conditions on performance of electrical discharge machining with powder suspended in working oil for titanium carbide deposition process. J. Adv. Manufactsuring Technol. 2009, 40, 1093–1101.
  • 10.
    Pedroso, A.F.V.; Sousa, V.F.C.; Sebbe, N.P.V.; et al. A Comprehensive Review on the Conventional and Non-Conventional Machining and Tool-Wear Mechanisms of INCONEL®. Metals2023, 13, 585.
  • 11.
    Muthuramalingam, T. Effect of diluted dielectric medium on spark energy in green EDM process using TGRA approach. Clean. Prod. 2019, 238, 117894.
  • 12.
    Mwangi, J.W.; Bui, V.D.; Thüsing, K.; et al. Characterization of the arcing phenomenon in micro-EDM and its effect on key mechanical properties of medical-grade Nitinol. Mater. Process. Technol. 2020, 275, 116334.
  • 13.
    Tong, H.; Li, Y.; Hu, M. Experimental research on effects of process parameters on servo scanning 3D micro electrical discharge machining. J. Mech. Eng. 2012, 25, 114–121.
  • 14.
    Liu, Q.; Zhang, Q.; Wang, K.; et al. Scale effects and a method for similarity evaluation in micro electrical discharge machining. J. Mech. Eng. 2016, 29, 1193–1199.
  • 15.
    Tiwary, A.P.; Pradhan, B.B.; Bhattacharyya, B. Application of multi-criteria decision making methods for selection of micro-EDM process parameters. Manuf. 2014, 2, 251–258.
  • 16.
    Pedroso, A.F.V.; Sebbe, N.P.V.; Silva, F.J.G.; et al. An In-Depth Exploration of Unconventional Machining Techniques for INCONEL® Materials2024, 17, 1197.
  • 17.
    Xu, M.; Wei, R.; Li, C.; et al. High-frequency electrical discharge assisted milling of Inconel 718 under copper-beryllium bundle electrodes. Manuf. Process. 2023, 85, 1116–1132.
  • 18.
    Singh, P.N.; Raghukandan, K.; Rathinasabapathi, M.; et al. Electric discharge machining of Al–10%SiCP as-cast metal matrix composites. Mater. Process. Technol. 2004, 155–156, 1653-1657.
  • 19.
    Abdudeen, A.; Abu Qudeiri, J.E.; Kareem, A.; et al. Recent Advances and Perceptive Insights into Powder-Mixed Dielectric Fluid of EDM. Micromachines2020, 11, 754.
  • 20.
    Rahul; Datta, S.; Biswal, B.B.; Mahapatra, S.S. Machinability analysis of Inconel 601, 625, 718 and 825 during electro-discharge machining: On evaluation of optimal parameters setting. Measurement2019, 137, 382–400.
  • 21.
    Kathiresan, M.; Theerkka Tharisanan, R.; Pandiarajan, P. Chapter Seven–Computational analysis of provisional study on white layer properties by EDM vs. WEDM of aluminum metal matrix composites. In ComputationalIntelligence in Manufacturing, Kumar, K., Kakandikar, G., Davim, J.P., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 131–159.
  • 22.
    Qudeiri, J.E.A.; Zaiout, A.; Mourad, A.-H. I.; et al. Principles and Characteristics of Different EDM Processes in Machining Tool and Die Steels. Sci. 2020, 10, 2082.
  • 23.
    Garg, R.K.; Singh, K.K.; Sachdeva, A.; et al. Review of research work in sinking EDM and WEDM on metal matrix composite materials. J. Adv. Manuf. Technol. 2010, 50, 611–624.
  • 24.
    Ren, Z.; Fang, F.; Yan, N.; et al. State of the Art in Defect Detection Based on Machine Vision. J. Precis. Eng. Manuf. Green Technol. 2022, 9, 661–691.
  • 25.
    Ramulu, M. EDM Sinker Cutting of a Ceramic Particulate Composite, SiC-TiB2. Ceram. Mater. 1988, 31, 324–327.
  • 26.
    Karthikeyan, R.; Lakshmi Narayanan, P.R.; Naagarazan, R.S. Mathematical modelling for electric discharge machining of aluminium–silicon carbide particulate composites. Mater. Process. Technol. 1999, 87, 59–63.
  • 27.
    Kansal, H.K.; Singh, S.; Kumar, P. Parametric optimization of powder mixed electrical discharge machining by response surface methodology. Mater. Process. Technol. 2005, 169, 427–436.
  • 28.
    Hocheng, H.; Lei, W.T.; Hsu, H.S. Preliminary study of material removal in electrical-discharge machining of SiC/Al. Mater. Process. Technol. 1997, 63, 813–818.
  • 29.
    Kumar, S.; Singh, R.; Singh, T.P.; et al. Surface modification by electrical discharge machining: A review. Mater. Process. Technol. 2009, 209, 3675–3687.
  • 30.
    Lonardo, P.M.; Bruzzone, A.A. Effect of Flushing and Electrode Material on Die Sinking EDM. CIRP 1999, 48, 123–126.
  • 31.
    Wong, Y.S.; Lim, L.C.; Lee, L.C. Effects of flushing on electro-discharge machined surfaces. Mater. Process. Technol. 1995, 48, 299–305.
  • 32.
    Yan, B.H.; Wang, C.C. The machining characteristics of Al2O3/6061Al composite using rotary electro-discharge machining with a tube electrode. Mater. Process. Technol. 1999, 95, 222–231.
  • 33.
    Guu, Y.H.; Hocheng, H. Effects of Workpiece Rotation on Machinability During Electrical-Discharge Machining. Manuf. Process. 2001, 16, 91–101.
  • 34.
    Rajurkar, K.P.; Wang, W.M. Improvement of EDM Performance With Advanced Monitoring and Control Systems. Manuf. Sci. Eng. 1997, 119, 770–775.
  • 35.
    Soni, J.S.; Chakraverti, G. Machining characteristics of titanium with rotary electro-discharge machining. Wear1994, 171, 51–58.
  • 36.
    Yan, B.H.; Wang, C.C.; Liu, W.D.; et al. Machining Characteristics of Al2O3/6061Al Composite using Rotary EDM with a Disklike Electrode. J. Adv. Manuf. Technol. 2000, 16, 322–333.
  • 37.
    Kagaya, K.; Ōishi, Y.; Yada, K. Micro-electrodischarge machining using water as a working fluid—I: Micro-hole drilling. Eng. 1986, 8, 157–162.
  • 38.
    Sato, T.; Mizutani, T.; Yonemochi, K.; et al. The development of an electrodischarge machine for micro-hole boring. Eng. 1986, 8, 163–168.
  • 39.
    Curodeau, A.; Richard, M.; Frohn-Villeneuve, L. Molds surface finishing with new EDM process in air with thermoplastic composite electrodes. Mater. Process. Technol. 2004, 149, 278–283.
  • 40.
    Nguyen, H.-Q.; Nguyen, V.-T.; Phan, D.-P.; et al. Multi-Criteria Decision Making in the PMEDM Process by Using MARCOS, TOPSIS, and MAIRCA Methods. Sci. 2022, 12, 3720.
  • 41.
    Kumar, S.; Gupta, T. A review of electrical discharge machining (EDM) and its optimization techniques. Today Proc. 2023, https://doi.org/10.1016/j.matpr.2023.02.186.
  • 42.
    Ramana, P.V.; Kharub, M.; Singh, J.; et al. On material removal and tool wear rate in powder contained electric discharge machining of die steels. Today Proc. 2021, 38, 2411–2416.
  • 43.
    Sharma, D.; Hiremath, S.S. Review on tools and tool wear in EDM. Sci. Technol. 2021, 25, 802–873.
  • 44.
    Ghoreishi, M.; Atkinson, J. A comparative experimental study of machining characteristics in vibratory, rotary and vibro-rotary electro-discharge machining. Mater. Process. Technol. 2002, 120, 374–384.
  • 45.
    Sharma, D.; Bhowmick, A.; Goyal, A. Enhancing EDM performance characteristics of Inconel 625 superalloy using response surface methodology and ANFIS integrated approach. CIRP Manuf. Sci. Technol. 2022, 37, 155–173.
  • 46.
    Selvarajan, L.; Sasikumar, R.; Senthil Kumar, N.; et al. Effect of EDM parameters on material removal rate, tool wear rate and geometrical errors of aluminium material. Today Proc. 2021, 46, 9392–9396.
  • 47.
    Singh, N.K.; Singh, Y.; Sharma, A.; et al. An environmental-friendly electrical discharge machining using different sustainable techniques: A review. Mater. Process. Technol. 2021, 7, 537–566.
  • 48.
    Çakıroğlu, R.; Günay, M. Comprehensive analysis of material removal rate, tool wear and surface roughness in electrical discharge turning of L2 tool steel. Mater. Res. Technol. 2020, 9, 7305–7317.
  • 49.
    Zhang, J.; Han, F. Rotating short arc EDM milling method under composite energy field. Manuf. Process. 2021, 64, 805–815.
  • 50.
    Basha, S.M.; Dave, H.K.; Patel, H.V. Experimental investigation of jatropha curcas bio-oil and biodiesel in electric discharge machining of Ti-6Al-4V. Today: Proc. 2021, 38, 2102–2109.
  • 51.
    Quinsat, Y.; Sabourin, L.; Lartigue, C. Surface topography in ball end milling process: Description of a 3D surface roughness parameter. Mater. Process. Technol. 2008, 195, 135–143.
  • 52.
    Abdullah, A.; Shabgard, M.R. Effect of ultrasonic vibration of tool on electrical discharge machining of cemented tungsten carbide (WC-Co). J. Adv. Manuf. Technol. 2008, 38, 1137–1147.
  • 53.
    Pujiyulianto, E.; Suyitno, Effect of pulse current in manufacturing of cardiovascular stent using EDM die-sinking. J. Adv. Manuf. Technol. 2021, 112, 3031–3039.
  • 54.
    Das, S.; Joshi, S.N. Review of the Causes of Wire Breakage and Its Mitigation During the Wire Electric Discharge Machining Process. Manuf. Sci. Eng. 2022, 145, 040801.
  • 55.
    Joshi, A.Y.; Joshi, A.Y. A systematic review on powder mixed electrical discharge machining. Heliyon2019, 5, e02963.
  • 56.
    Maurya, M.; Maurya, N.; Bajpai, V. Effect of SiC Reinforced Particle Parameters in the Development of Aluminium Based Metal Matrix Composite. Evergreen2019, 6, 200–206.
  • 57.
    Selvarajan, L.; Rajavel, J.; Prabakaran, V.; et al. A Review Paper on EDM Parameter of Composite material and Industrial Demand Material Machining. Today Proc. 2018, 5, 5506–5513.
  • 58.
    Lin, Y.-C.; Wang, A.C.; Wang, D.-A.; et al. Machining Performance and Optimizing Machining Parameters of Al2O3–TiC Ceramics Using EDM Based on the Taguchi Method. Manuf. Process. 2009, 24, 667–674.
  • 59.
    Irina, M.M.W.; Azwan, I.B.A. Nonconventional Machining Processes of Fibre Reinforced Polymer Composites. In Advancesin Machining of Composite Materials: Conventional and Non-Conventional Processes; Shyha, I., Huo, D.,; Springer International Publishing: Cham, Switzerland, 2021; pp. 71–99.
  • 60.
    Dunleavey, J.; Marimuthu, S.; Antar, M. Non-conventional Machining of Metal Matrix Composites. In Advancesin Machining of Composite Materials: Conventional and Non-conventional Processes; Shyha, I., Huo, D.,; Springer International Publishing: Cham, Switzerland, 2021; pp. 183–217.
  • 61.
    Hung, N.P.; Yang, L.J.; Leong, K.W. Electrical discharge machining of cast metal matrix composites. Mater. Process. Technol. 1994, 44, 229–236.
  • 62.
    Zhang, S.; Zhang, W.; Wang, P.; et al. Simulation of Material Removal Process in EDM with Composite Tools. Mater. Sci. Eng. 2019, 2019, 1321780.
  • 63.
    Lau, W.S.; Wang, M.; Lee, W.B. Electrical discharge machining of carbon fibre composite materials. J. Mach. Tools Manuf. 1990, 30, 297–308.
  • 64.
    Ablyaz, T.R.; Shlykov, E.S.; Muratov, K.R.; et al. Analysis of Wire-Cut Electro Discharge Machining of Polymer Composite Materials. Micromachines2021, 12, 571.
  • 65.
    Gupta, M. Introduction to Metal Matrix Composite Materials: An Introduction. In Encyclopediaof Materials: Composites; Brabazon, D.,; Elsevier: Oxford, UK, 2021; pp. 1–10.
  • 66.
    Rajak, D.K.; Menezes, P.L. Application of Metal Matrix Composites in Engineering Sectors. In Encyclopediaof Materials: Composites; Brabazon, D.,; Elsevier: Oxford, UK, 2021; pp. 525–539.
  • 67.
    Selvam, J.D.R.; Dinaharan, I.; Rai, R.S. Matrix and Reinforcement Materials for Metal Matrix Composites. In Encyclopediaof Materials: Composites; Brabazon, D.,; Elsevier: Oxford, UK, 2021; pp. 615–639.
  • 68.
    Sarmah, P.; Gupta, K. A Review on the Machinability Enhancement of Metal Matrix Composites by Modern Machining Processes. Micromachines2024, 15, 947.
  • 69.
    Kar, A.; Sharma, A.; Kumar, S. A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites. Crystals2024, 14, 412.
  • 70.
    Chen, J.-P.; Gu, L.; He, G.-J. A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites. Manuf. 2020, 8, 279–315.
  • 71.
    Sarala Rubi, C.; Prakash, J.U.; Juliyana, S.J.; et al. Comprehensive review on wire electrical discharge machining: A non-traditional material removal process. Mech. Eng. 2024, 10, 1322605.
  • 72.
    Rubi, C.S.; Prakash, J.U.; Juliyana, S.J.; et al. Multi-objective optimization of machining variables for wire-EDM of LM6/fly ash composite materials using grey relational analysis. Eng. Compos. Mater. 2024, 31, 20240008.
  • 73.
    Rashid, A.B.; Haque, M.; Islam, S.M.M.; et al. Breaking Boundaries with Ceramic Matrix Composites: A Comprehensive Overview of Materials, Manufacturing Techniques, Transformative Applications, Recent Advancements, and Future Prospects. Mater. Sci. Eng. 2024, 2024, 2112358.
  • 74.
    Razzell, A.G.; Venkata Siva, S.B.; Rama Sreekanth, P.S. Joining and Machining of Ceramic Matrix Composites. In ReferenceModule in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands,
  • 75.
    Gavalda Diaz, O.; Garcia Luna, G.; Liao, Z.; et al. The new challenges of machining Ceramic Matrix Composites (CMCs): Review of surface integrity. J. Mach. Tools Manuf. 2019, 139, 24–36.
  • 76.
    Liu, Y.; Qu, J.; Zhao, K.; et al. Study of the High-Efficiency Ejecting-Explosion EDM of SiCp/Al Composite. Micromachines2023, 14, 1315.
  • 77.
    Bilal, A.; Jahan, M.P.; Talamona, D.; et al. Electro-Discharge Machining of Ceramics: A Review. Micromachines2019, 10, 10.
  • 78.
    Samant, A.N.; Dahotre, N.B. Laser machining of structural ceramics—A review. Eur. Ceram. Soc. 2009, 29, 969–993.
  • 79.
    Panic, N.; Leoncini, E.; de Belvis, G.; et al. Evaluation of the Endorsement of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement on the Quality of Published Systematic Review and Meta-Analyses. PLoSONE 2013, 8, e83138.
  • 80.
    Liao, Y.; Deschamps, F.; Loures, E.d.F.R.; et al. Past, present and future of Industry 4.0–a systematic literature review and research agenda proposal. J. Prod. Res. 2017, 55, 3609–3629.
  • 81.
    Azarian, M.; Yu, H.; Shiferaw, A.T.; et al. Do We Perform Systematic Literature Review Right? A Scientific Mapping and Methodological Assessment. Logistics2023, 7, 89.
  • 82.
    Tóth, Á.; Suta, A.; Pimentel, J.; et al. A comprehensive, semi-automated systematic literature review (SLR) design: Application to P-graph research with a focus on sustainability. Clean. Prod. 2023, 415, 137741.
  • 83.
    Moher, D.; Liberati, A.; Tetzlaff, J.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Surg. 2010, 8, 336–341.
  • 84.
    Wells, G.A.; Wells, G.; Shea, B.; et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses.Available online: https://www.researchgate.net/publication/261773681_The_Newcastle-Ottawa_Scale_NOS_for_Assessing_the_Quality_of_Non-Randomized_Studies_in_Meta-Analysis (accessed on 15 June 2025).
  • 85.
    Müller, F.; Monaghan, J. Non-conventional machining of particle reinforced metal matrix composite. J. Mach. Tools Manuf. 2000, 40, 1351–1366.
  • 86.
    Wang, C.C.; Yan, B.H. Blind-hole drilling of Al2O3/6061Al composite using rotary electro-discharge machining. Mater. Process. Technol. 2000, 102, 90–102.
  • 87.
    Rozenek, M.; Kozak, J.; Dąbrowski, L.; et al. Electrical discharge machining characteristics of metal matrix composites. Mater. Process. Technol. 2001, 109, 367–370.
  • 88.
    Ramulu, M.; Paul, G.; Patel, J. EDM surface effects on the fatigue strength of a 15 vol% SiCp/Al metal matrix composite material. Struct. 2001, 54, 79–86.
  • 89.
    Mohan, B.; Rajadurai, A.; Satyanarayana, K.G. Effect of SiC and rotation of electrode on electric discharge machining of Al–SiC composite. Mater. Process. Technol. 2002, 124, 297–304.
  • 90.
    Singh, P.N.; Raghukandan, K.; Pai, B.C. Optimization by Grey relational analysis of EDM parameters on machining Al–10%SiCP composites. Mater. Process. Technol. 2004, 155–156, 1658–1661.
  • 91.
    Mohan, B.; Rajadurai, A.; Satyanarayana, K.G. Electric discharge machining of Al–SiC metal matrix composites using rotary tube electrode. Mater. Process. Technol. 2004, 153–154, 978–985.
  • 92.
    Kozak, J.; Rajurkar, K.P.; Chandarana, N. Machining of low electrical conductive materials by wire electrical discharge machining (WEDM). Mater. Process. Technol. 2004, 149, 266–271.
  • 93.
    Dhar, S.; Purohit, R.; Saini, N.; et al. Mathematical modeling of electric discharge machining of cast Al–4Cu–6Si alloy–10wt.% SiCP composites. Mater. Process. Technol. 2007, 194, 24–29.
  • 94.
    Singh, S.; Maheshwari, S.; Pandey, P. Effect of SiC powder-suspended dielectric fluid on the surface finish of 6061Al/Al2O3P/20p composites during electric discharge machining. J. Mach. Mach. Mater. 2008, 4, 252.
  • 95.
    Ahamed, A.R.; Asokan, P.; Aravindan, S. EDM of hybrid Al–SiCp–B4Cp and Al–SiCp–Glassp MMCs. J. Adv. Manuf. Technol. 2009, 44, 520–528.
  • 96.
    Malek, O.; Vleugels, J.; Perez, Y.; et al. Electrical discharge machining of ZrO2 toughened WC composites. Chem. Phys. 2010, 123, 114–120.
  • 97.
    Liu, J.W.; Yue, T.M.; Guo, Z.N. An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites. J. Mach. Tools Manuf. 2010, 50, 86–96.
  • 98.
    Senthilkumar, V.; Omprakash, B.U. Effect of Titanium Carbide particle addition in the aluminium composite on EDM process parameters. Manuf. Process. 2011, 13, 60–66.
  • 99.
    Gopalakannan, S.; Senthilvelan, T.; Ranganathan, S. Modeling and Optimization of EDM Process Parameters on Machining of Al 7075-B4C MMC Using RSM. Procedia 2012, 38, 685–690.
  • 100.
    Babu Rao, T.; Gopala Krishna, A. Simultaneous optimization of multiple performance characteristics in WEDM for machining ZC63/SiCp MMC. Manuf. 2013, 1, 265–275.
  • 101.
    Hu, F.Q.; Cao, F.Y.; Song, B.Y.; et al. Surface Properties of SiCp/Al Composite by Powder-Mixed EDM. ProcediaCIRP 2013, 6, 101–106.
  • 102.
    Sidhu, S.S.; Batish, A.; Kumar, S. EDM of Metal Matrix Composite for Parameter Design Using Lexicographic Goal Programming. Manuf. Process. 2013, 28, 495–500.
  • 103.
    Singh, A.; Kumar, P.; Singh, I. Process Optimization for Electro-Discharge Drilling of Metal Matrix Composites. Procedia 2013, 64, 1157–1165.
  • 104.
    Fard, R.K.; Afza, R.A.; Teimouri, R. Experimental investigation, intelligent modeling and multi-characteristics optimization of dry WEDM process of Al–SiC metal matrix composite. Manuf. Process. 2013, 15, 483–494.
  • 105.
    Sidhu, S.S.; Batish, A.; Kumar, S. Study of Surface Properties in Particulate-Reinforced Metal Matrix Composites (MMCs) Using Powder-Mixed Electrical Discharge Machining (EDM). Manuf. Process. 2014, 29, 46–52.
  • 106.
    Vinoth Kumar, S.; Pradeep Kumar, M. Machining process parameter and surface integrity in conventional EDM and cryogenic EDM of Al–SiCp MMC. Manuf. Process. 2015, 20, 70–78.
  • 107.
    Rao, T.B. Optimizing machining parameters of wire-EDM process to cut Al7075/SiCp composites using an integrated statistical approach. Manuf. 2016, 4, 202–216.
  • 108.
    Kumar, N.M.; Kumaran, S.S.; Kumaraswamidhas, L.A. An investigation of mechanical properties and material removal rate, tool wear rate in EDM machining process of AL2618 alloy reinforced with Si3N4, AlN and ZrB2 composites. Alloys Compd. 2015, 650, 318–327.
  • 109.
    Selvarajan, L.; Sathiya Narayanan, C.; Jeyapaul, R.; et al. Optimization of EDM process parameters in machining Si3N4–TiN conductive ceramic composites to improve form and orientation tolerances. Measurement2016, 92, 114–129.
  • 110.
    Kumar, N.M.; Kumaran, S.S.; Kumaraswamidhas, L.A. High temperature investigation on EDM process of Al 2618 alloy reinforced with Si3N4, ALN and ZrB2 in-situ composites. Alloys Compd. 2016, 663, 755–768.
  • 111.
    Rengasamy, N.V.; Rajkumar, M.; Senthil Kumaran, S. An analysis of mechanical properties and optimization of EDM process parameters of Al 4032 alloy reinforced with Zrb2and Tib2 in-situ composites.  Alloys Compd. 2016, 662, 325–338.
  • 112.
    Roy, C.; Syed, K.H.; Kuppan, P. Machinablity of Al/10%SiC/2.5%TiB2Metal Matrix Composite with Powder-mixed Electrical Discharge Machning. Procedia  2016, 25, 1056–1063.
  • 113.
    Pramanik, A.; Basak, A.K. Degradation of wire electrode during electrical discharge machining of metal matrix composites. Wear2016, 346–347, 124–131.
  • 114.
    Annebushan Singh, M.; Kumar Sarma, D. Parametric and subsurface analysis of MWCNT alumina composites in WEDM process. Int. 2018, 44, 2186–2197.
  • 115.
    Mohanty, S.; Mishra, A.; Nanda, B.K.; et al. Multi-objective parametric optimization of nano powder mixed electrical discharge machining of AlSiCp using response surface methodology and particle swarm optimization. Eng. J. 2018, 57, 609–619.
  • 116.
    Antil, P.; Singh, S.; Singh, P.J. Taguchi’s Methodology Based Electrochemical Discharge Machining of Polymer Matrix Composites. Procedia 2018, 26, 469–473.
  • 117.
    Kumar, R.; Agrawal, P.K.; Singh, I. Fabrication of micro holes in CFRP laminates using EDM. Manuf. Process. 2018, 31, 859–866.
  • 118.
    Kumaran, S.T.; Ko, T.J.; Kurniawan, R. Grey fuzzy optimization of ultrasonic-assisted EDM process parameters for deburring CFRP composites. Measurement2018, 123, 203–212.
  • 119.
    Kar, C.; Surekha, B.; Jena, H.; et al. Study of Influence of Process Parameters in Electric Discharge Machining of Aluminum—Red Mud Metal Matrix Composite. Procedia 2018, 20, 392–399.
  • 120.
    VP, G.M.Experimental Investigation of Wire-EDM Machining of Low Conductive Al-SiC-TiC Metal Matrix Composite. Metals 2020, 10, 1188.
  • 121.
    Yue, X.; Li, Q.; Yang, X. Influence of thermal stress on material removal of Cf_SiC composite in EDM. Int. 2020, 46, 7998–8009.
  • 122.
    Skoczypiec, S.; Bizoń, W.; Podolak-Lejtas, A. Selected Aspects of Electrodischarge Milling of Aluminum Alloy-Based Metal Matrix Composite with SiC Reinforcement. Procedia 2020, 47, 795–798.
  • 123.
    Sidhu, S.S.; Ablyaz, T.R.; Bains, P.S.; et al. Parametric Optimization of Electric Discharge Machining of Metal Matrix Composites Using Analytic Hierarchy Process. Micromachines2021, 12, 1289.
  • 124.
    Chen, Z.; Zhou, H.; Yan, Z.; et al. Machining characteristics of 65 vol.% SiCp/Al composite in micro-WEDM. Int. 2021, 47, 13533–13543.
  • 125.
    Srinivasan, V.P.; Palani, P.K.; Balamurugan, S. Experimental investigation on EDM of Si3N4–TiN using grey relational analysis coupled with teaching-learning-based optimization algorithm. Int. 2021, 47, 19153–19168.
  • 126.
    Das, S.; Acharya, U.; Rao, S.V.V.N.S.; et al. Assessment of the surface characteristics of aerospace grade AA6092/17.5 SiCp-T6 composite processed through EDM. CIRP Manuf. Sci. Technol. 2021, 33, 123–132.
  • 127.
    Malhotra, P.; Singh, N.K.; Tyagi, R.K.; et al. Comparative study of rotary-EDM, gas assisted-EDM, and gas assisted powder mixed-EDM of the hybrid metal matrix composite. Mater. Process. Technol. 2021, 7, 27–41.
  • 128.
    Pattanayak, S.; Sahoo, A.K.; Sahoo, S.K. CFRP composite drilling through electrical discharge machining using aluminum as fixture plate. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 5468–5483.
  • 129.
    Sordetti, F.; Magnan, M.; Carabillò, A.; et al. Influence of the surface finishing on the wear behaviour of cemented carbides worked by Electrical Discharge Machining. J. Refract. Met. Hard Mater. 2023, 113, 106196.
  • 130.
    Keskin, G.; Salunkhe, S.; Küçüktürk, G.; et al. Optimization of PMEDM process parameters for B4C and B4C+SiC reinforced AA7075 composites. Eng. Res. 2023, https://doi.org/10.1016/j.jer.2023.09.012.
  • 131.
    Selvarajan, L.; Rajavel, R.; Venkataramanan, K.; et al. Experimental investigation on surface morphology and recasting layer of Si3N4-TiN composites machined by die-sinking and rotary EDM. Int. 2023, 49, 8487–8501.
  • 132.
    Alfattani, R.; Yunus, M.; Selvarajan, L.; et al. Spark erosion behavior in the machining of MoSi2–SiC ceramic composites for improving dimensional accuracy. Mech. Behav. Biomed. Mater. 2023, 148, 106166.
  • 133.
    Mohankumar, V.; Kapilan, S.; Karthik, A.; et al. A Hybrid Design of Experiment Approach in Analyzing the Electrical Discharge Machining Influence on Stir Cast Al7075/B4C Metal Matrix Composites. Metals2024, 14, 205.
  • 134.
    Mohankumar, V.; Kumarasamy, S.P.; Palanisamy, S.; et al. Process parameters optimization of EDM for hybrid aluminum MMC using hybrid optimization technique. Heliyon2024, 10, e35555.
  • 135.
    Ali, M.A.; Mufti, N.A.; Sana, M.; et al. Enhancing high-speed EDM performance of hybrid aluminium matrix composite by genetic algorithm integrated neural network optimization. Mater. Res. Technol. 2024, 31, 4113–4127.
  • 136.
    Farooq, H.; Pasha, R.A. Investigation of process parameters for modeling of ceramic composite SiSiC IN dry EDM (DEDM) cutting. Heliyon2024, 10, e36459.
  • 137.
    Ramulu, M.; Garbini, J.L. EDM Surface Characterization of a Ceramic Composite TiB2/SiC. Eng. Mater. Technol. 1991, 113, 437–442.
  • 138.
    Ramulu, M.; Taya, M. EDM machinability of SiCw/Alcomposites. Mater. Sci. 1989, 24, 1103–1108.
  • 139.
    Kansal, H.K.; Sehijpal, S.; Kumar, P. An experimental study of the machining parameters in powder mixed electric discharge machining of Al–10%SiCP metal matrix composites. J. Mach. Mach. Mater. 2006, 1, 396–411.
  • 140.
    Gatto, A.; Iuliano, L. Cutting mechanisms and surface features of WED machined metal matrix composites. Mater. Process. Technol. 1997, 65, 209–214.
  • 141.
    Lauwers, B.; Vleugels, J.; Malek, O.; et al. 8–Electrical discharge machining of composites. In MachiningTechnology for Composite Materials; Hocheng, H.,; Woodhead Publishing: Sawston, UK, 2012; pp. 202–241.
  • 142.
    Guo, Z.N.; Wang, X.; Huang, Z.G.; et al. Experimental investigation into shaping particle-reinforced material by WEDM-HS. Mater. Process. Technol. 2002, 129, 56–59.
  • 143.
    Yan, B.H.; Tsai, H.C.; Huang, F.Y.; et al. Examination of wire electrical discharge machining of Al2O3p/6061Al composites. J. Mach. Tools Manuf. 2005, 45, 251–259.
  • 144.
    Patil, N.G.; Brahmankar, P. Some investigations into wire electro-discharge machining performance of Al/SiC p composites. J. Mach. Mach. Mater. 2006, 1, 412–431.
Share this article:
How to Cite
Pedroso, A. F. V.; Lucas, R.; Teixeira, L.; Campilho, R. D. S. G.; Pinto, A. G.; Costa, R. D. F. S.; Sales-Contini, R. d. C. M. Electrical Discharge Machining of Composites: A Critical Review of Challenges and Innovations. Journal of Mechanical Engineering and Manufacturing 2025, 1 (1), 5. https://doi.org/10.53941/jmem.2025.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.