2512002607
  • Open Access
  • Article

The Design of a PNA Probe to Improve Legionella pneumophila Monitoring

  • Ana Barbosa 1,2,   
  • Montserrat Nácher-Vázquez 1,3,4,   
  • Darla M. Goeres 1,2,   
  • Carina Almeida 1,3,   
  • Nuno F. Azevedo 1,   
  • Laura Cerqueira 1,*

Received: 23 Oct 2025 | Revised: 17 Dec 2025 | Accepted: 23 Dec 2025 | Published: 30 Dec 2025

Abstract

Legionella is a significant public health threat in engineered water systems, requiring rapid and accurate environmental monitoring to prevent outbreaks. Traditional detection methods, such as culture-based assays and PCR, are limited by long processing times and the potential for false negatives due to viable but non-culturable (VBNC) cells. This study addresses these limitations by developing a novel Peptide Nucleic Acid-Fluorescence in situ Hybridization (PNA-FISH) method for the specific and sensitive detection of Legionella pneumophila. In silico analysis predicted high theoretical specificity (100.0%) and sensitivity (99.8%), results that were confirmed by experimental validation against 17 L. pneumophila strains and 37 non-target strains (including Pseudomonas, Acinetobacter, and other Legionella species), demonstrating strong fluorescence signals with no cross-reactivity. Furthermore, the method was successfully applied to artificially contaminated tap water, achieving a limit of detection of 103 CFU mL−1 directly on the filter membrane. This work highlights the potential of PNA-based probes to improve bacterial monitoring, offering fast, reliable, and field-adaptable detection of L. pneumophila. The findings support the integration of this probe into routine water system monitoring workflows, facilitating timely assessment of contamination and outbreak prevention.

References 

  • 1.

    Glick, T.H.; Gregg, M.B.; Berman, B.; et al. Pontiac fever: An epidemic of unknown etiology in a health department: I. Clinical and epidemiologic aspects. Am. J. Epidemiol. 1978, 107, 149–160.

  • 2.

    McDade, J.E.; Shepard, C.C.; Fraser, D.W.; et al. Legionnaires’ disease: Isolation of a bacterium and demonstration of its role in other respiratory disease. N. Engl. J. Med. 1977, 297, 1197–1203.

  • 3.

    Diederen, B. Legionella spp. and Legionnaires’ disease. J. Infect. 2008, 56, 1–12.

  • 4.

    Hamilton, K.; Prussin, A.; Ahmed, W.; et al. Outbreaks of legionnaires’ disease and pontiac fever 2006–2017. Curr. Environ. Health Rep. 2018, 5, 263–271.

  • 5.

    Yao, X.H.; Shen, F.; Hao, J.; et al. A review of Legionella transmission risk in built environments: Sources, regulations, sampling, and detection. Front. Public Health 2024, 12, 1415157.

  • 6.

    Hammes, F.; Gabrielli, M.; Cavallaro, A.; et al. Foresight 2035: A perspective on the next decade of research on the management of Legionella spp. in engineered aquatic environments. FEMS Microbiol. Rev. 2025, 49, fuaf022.

  • 7.

    ISO 11731:2017; Water Quality–Enumeration of Legionella. ISO: Geneva, Switzerland, 2017.

  • 8.

    ISO/TS 12869; Water Quality—Detection and Quantification of Legionella spp. and/or Legionella pneumophila by Concentration and Genic Amplification by Quantitative Polymerase Chain Reaction (qPCR). ISO: Geneva, Switzerland, 2019.

  • 9.

    Yang, S.; Rothman, R.E. PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 2004, 4, 337–348.

  • 10.

    Shang, M.; Guo, J.; Guo, J. Point-of-care testing of infectious diseases: Recent advances. Sens. Diagn. 2023, 2, 1123–1144.

  • 11.

    Lotoux, A.; Milohanic, E.; Bierne, H. The viable but non-culturable state of listeria monocytogenes in the one-health continuum. Front. Cell. Infect. Microbiol. 2022, 12, 849915.

  • 12.

    Sannigrahi, A.; De, N.; Bhunia, D.; et al. Peptide nucleic acids: Recent advancements and future opportunities in biomedical applications. Bioorg. Chem. 2025, 155, 108146.

  • 13.

    Nacher-Vazquez, M.; Santos, B.; Azevedo, N.F.; et al. The role of Nucleic Acid Mimics (NAMs) on FISH-based techniques and applications for microbial detection. Microbiol. Res. 2022, 262, 127086. https://doi.org/10.1016/j.micres.2022.127086.

  • 14.

    Cerqueira, L.; Azevedo, N.F.; Almeida, C.; et al. DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int. J. Mol. Sci. 2008, 9, 1944–1960. https://doi.org/10.3390/ijms9101944.

  • 15.

    Nacher-Vazquez, M.; Barbosa, A.; Armelim, I.; et al. Development of a Novel Peptide Nucleic Acid Probe for the Detection of Legionella spp. in Water Samples. Microorganisms 2022, 10, 1409. https://doi.org/10.3390/microorganisms10071409.

  • 16.

    Silva, A.R.; Melo, L.F.; Keevil, C.W.; et al. Legionella colonization and 3D spatial location within a Pseudomonas biofilm. Sci. Rep. 2024, 14, 16781.

  • 17.

    Rocha, R.; Sousa, J.M.; Cerqueira, L.; et al. Development and application of Peptide Nucleic Acid Fluorescence in situ Hybridization for the specific detection of Listeria monocytogenes. Food Microbiol. 2019, 80, 1–8. https://doi.org/10.1016/j.fm.2018.12.009.

  • 18.

    Cerqueira, L.; Moura, S.; Almeida, C.; et al. Establishment of a New PNA-FISH Method for Aspergillus fumigatus Identification: First Insights for Future Use in Pulmonary Samples. Microorganisms 2020, 8, 1950. https://doi.org/10.3390/microorganisms8121950.

  • 19.

    Rigby, S.; Procop, G.W.; Haase, G.; et al. Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J. Clin. Microbiol. 2002, 40, 2182–2186. https://doi.org/10.1128/JCM.40.6.2182-2186.2002.

  • 20.

    Gomez, A.; Miller, N.S.; Smolina, I. Visual detection of bacterial pathogens via PNA-based padlock probe assembly and isothermal amplification of DNAzymes. Anal. Chem. 2014, 86, 11992–11998. https://doi.org/10.1021/ac5018748.

  • 21.

    Noppakuadrittidej, P.; Charlermroj, R.; Makornwattana, M.; et al. Development of peptide nucleic acid-based bead array technology for Bacillus cereus detection. Sci. Rep. 2023, 13, 12482. https://doi.org/10.1038/s41598-023-38877-1.

  • 22.

    Zaid, M.H.M.; Abdullah, J.; Yusof, N.A.; et al. PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis. Sens. Actuators B Chem. 2017, 241, 1024–1034.

  • 23.

    Kim, Y.; Mohanty, S.K. PNA Functionalized Gold Nanoparticles on TiO2 Nanotubes Biosensor for Electrochemical DNA Fragment Detection. Adv. Mater. Interfaces 2025, 12, 2400762. https://doi.org/10.1002/admi.202400762.

  • 24.

    Barbosa, V.B.; Rodrigues, C.F.; Cerqueira, L.; et al. Microfluidics combined with fluorescence in situ hybridization (FISH) for Candida spp. detection. Front. Bioeng. Biotechnol. 2022, 10, 987669.

  • 25.

    Ferreira, A.M.; Cruz-Moreira, D.; Cerqueira, L.; et al. Yeasts identification in microfluidic devices using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). Biomed. Microdevices 2017, 19, 11.

  • 26.

    Rane, T.D.; Zec, H.C.; Puleo, C.; et al. Droplet microfluidics for amplification-free genetic detection of single cells. Lab Chip 2012, 12, 3341–3347.

  • 27.

    Mach, K.E.; Kaushik, A.M.; Hsieh, K.; et al. Optimizing peptide nucleic acid probes for hybridization-based detection and identification of bacterial pathogens. Analyst 2019, 144, 1565–1574.

  • 28.

    Wilks, S.A.; Keevil, C.W. Targeting species-specific low-affinity 16S rRNA binding sites by using peptide nucleic acids for detection of Legionellae in biofilms. Appl. Environ. Microbiol. 2006, 72, 5453–5462. https://doi.org/10.1128/AEM.02918-05.

  • 29.

    Simões, L.C.; Simões, M.; Oliveira, R.; et al. Potential of the adhesion of bacteria isolated from drinking water to materials. J. Basic Microbiol. 2007, 47, 174–183.

  • 30.

    Teixeira, H.; Sousa, A.L.; Azevedo, A.S. Bioinformatic tools and guidelines for the design of fluorescence in situ hybridization probes. In Fluorescence In-Situ Hybridization (FISH) for Microbial Cells: Methods and Concepts; Springer: Berlin/Heidelberg, Germany, 2021; pp. 35–50.

  • 31.

    Westram, R.; Bader, K.; Prüsse, E.; et al. ARB: A software environment for sequence data. In Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 399–406.

  • 32.

    Kumar, S.; Stecher, G.; Li, M.; et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549.

  • 33.

    Almeida, C.; Azevedo, N.F.; Fernandes, R.; et al. Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Salmonella spp. in a broad spectrum of samples. Appl. Environ. Microbiol. 2010, 76, 4476–4485.

  • 34.

    Oliveira, R.; Azevedo, A.S.; Mendes, L. Application of nucleic acid mimics in fluorescence in situ hybridization. In Fluorescence In-Situ Hybridization (FISH) for Microbial Cells: Methods and Concepts; Springer: Berlin/Heidelberg, Germany, 2021; pp. 69–86.

  • 35.

    Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675.

  • 36.

    Yilmaz, L.S.; Okten, H.E.; Noguera, D.R. Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl. Environ. Microbiol. 2006, 72, 733–744. https://doi.org/10.1128/AEM.72.1.733-744.2006.

  • 37.

    Yilmaz, L.S.; Noguera, D.R. Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl. Environ. Microbiol. 2004, 70, 7126–7139. https://doi.org/10.1128/AEM.70.12.7126-7139.2004.

  • 38.

    Sousa, L.G.; Almeida, C.; Muzny, C.A.; et al. Development of a Prevotella bivia PNA probe and a multiplex approach to detect three relevant species in bacterial vaginosis-associated biofilms. NPJ Biofilms Microbiomes 2023, 9, 42.

  • 39.

    Whiley, H.; Taylor, M. Legionella detection by culture and qPCR: Comparing apples and oranges. Crit. Rev. Microbiol. 2016, 42, 65–74.

  • 40.

    Hassall, J.; Coxon, C.; Patel, V.C.; et al. Limitations of current techniques in clinical antimicrobial resistance diagnosis: Examples and future prospects. NPJ Antimicrob. Resist. 2024, 2, 16.

  • 41.

    Li, L.; Mendis, N.; Trigui, H.; et al. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 2014, 5, 258.

  • 42.

    Almeida, C.; Azevedo, N.; Iversen, C.; et al. Development and application of a novel peptide nucleic acid probe for the specific detection of Cronobacter genomospecies (Enterobacter sakazakii) in powdered infant formula. Appl. Environ. Microbiol. 2009, 75, 2925–2930.

  • 43.

    Rohde, A.; Hammerl, J.A.; Appel, B.; et al. FISHing for bacteria in food–A promising tool for the reliable detection of pathogenic bacteria? Food Microbiol. 2015, 46, 395–407.

  • 44.

    Allegra, S.; Berger, F.; Berthelot, P.; et al. Use of flow cytometry to monitor Legionella viability. Appl. Environ. Microbiol. 2008, 74, 7813–7816.

  • 45.

    Nisar, M.A.; Ross, K.E.; Brown, M.H.; et al. Detection and quantification of viable but non-culturable Legionella pneumophila from water samples using flow cytometry-cell sorting and quantitative PCR. Front. Microbiol. 2023, 14, 1094877.

Share this article:
How to Cite
Barbosa, A.; Nácher-Vázquez, M.; Goeres, D. M.; Almeida, C.; Azevedo, N. F.; Cerqueira, L. The Design of a PNA Probe to Improve Legionella pneumophila Monitoring. Journal of Microbes in Health and Disease 2025, 1 (1), 100006. https://doi.org/10.53941/jmhd.2025.100006.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.