2504000217
  • Open Access
  • Article
In Vitro Activity of Isolated Bioactive Metabolites from Endophytic Fungus Associated with Aegiceras corniculatum
  • Sharika Noshin 1,   
  • Rahul Dev Bairagi 1,   
  • Sadia Airin 1,   
  • Dipa Debnath 1,   
  • As-Sazzad Mahmud 1, 2,   
  • Md. Sohanur Rahaman 1, 3,   
  • Amit Kumar Acharzo 1,   
  • Raiyan Rahman Reon 1,   
  • Md. Amirul Islam 1, 3, *

Received: 18 Nov 2024 | Revised: 03 Jan 2025 | Accepted: 06 Jan 2025 | Published: 07 Feb 2025

Abstract

A vast and unexplored source of diverse and unique compounds and biological properties is provided by the mangrove fungi. The primary goal is to investigate the biological effects of secondary bioactive compounds produced by endophytic fungi that reside in Aegiceras corniculatum bark, focusing on their antioxidant, alpha-glucosidase inhibitory, and antimicrobial properties. Seven distinct strains of endophytic fungi were isolated, of which three particular strains (ACSF-1, ACSF-3, and ACSF-5) were selected for further examination. These strains were cultivated in potato dextrose broth (PDB) and underwent extraction using dichloromethane (DCM) and ethyl acetate (EtOAc). In the DPPH assay, the fraction ACSF-3 of the DCM showed a good IC50 value of 239.88 µg/mL, whereas the ascorbic acid IC50 was 15.985 µg/mL. Additionally, the crude extract ACSF-3 exhibited the highest levels of total phenolic content (89.89 mg GAE/g), total flavonoid content (288.52 mg QE/g), and total tannin content (53.85 GAE/g). To evaluate antihyperglycemic activity, the ACSF-3 n-Hexane fraction, which showcased the highest efficacy with a value of 0.91 µg/mL. The extracts of ACSF-1 and ACSF-3 demonstrated significant zones of inhibition against Escherichia coli, with sizes reaching up to 16 and 12 mm, respectively, and ACSF-5 displayed the highest zone of inhibition against Staphylococcus aureus.

References 

  • 1.
    Compant, S.; Cambon, M.C.; Vacher, C.; et al. The Plant Endosphere World—Bacterial Life within Plants. Environ. Microbiol. 2021, 23, 1812–1829.
  • 2.
    Odelade, K.A.; Babalola, O.O. Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity. Int. J. Environ. Res. Public Health 2019, 16, 3873.
  • 3.
    Igiehon, N.O.; Babalola, O.O.; Cheseto, X.; et al. Effects of Rhizobia and Arbuscular Mycorrhizal Fungi on Yield, Size Distribution and Fatty Acid of Soybean Seeds Grown under Drought Stress. Microbiol. Res. 2021, 242, 126640.
  • 4.
    Jalgaonwala, R.E.; Mohite, B.V.; Mahajan, R.T. A Review: Natural Products from Plant Associated Endophytic Fungi. J. Microbiol. Biotechnol. Res. 2011, 1, 21–32.
  • 5.
    Omojate Godstime, C.; Enwa Felix, O.; Jewo Augustina, O.; et al. Mechanisms of Antimicrobial Actions of Phytochemicals against Enteric Pathogens—A Review. J. Pharm. Chem. Biol. Sci. 2014, 2, 77–85.
  • 6.
    Tusharbhai, N.; Amar, P.; Pandey, N. Salinity Tolerance of Aegiceras corniculatum (L.) Blanco from Gujarat Coasts of India. An. Biol. Fax 2009, 31, 93–104.
  • 7.
    Vinh, L.B.; Phong, N.V.; Ali, I.; et al. Identification of Potential Anti-Inflammatory and Melanoma Cytotoxic Compounds from Aegiceras Corniculatum. Med. Chem. Res. 2020, 29, 2020–2027. https://doi.org/10.1007/s00044-020-02613-5.
  • 8.
    Janmanchi, H.; Raju, A.; Degani, M.S.; et al. Antituberculosis, Antibacterial and Antioxidant Activities of Aegiceras Corniculatum, a Mangrove Plant and Effect of Various Extraction Processes on Its Phytoconstituents and Bioactivity. S. Afr. J. Bot. 2017, 113, 421–427.
  • 9.
    Roome, T.; Razzak, A.; Ali, P.; et al. Therapeutic Effect of Aegiceras Corniculatum in Chronic Granulomatous Inflammation and Arthritis. J. Dow Univ. Heal. Sci. 2014, 8, 98–103.
  • 10.
    Gurudeeban, S.; Satyavani, K.; Ramanathan, T.; et al. Antidiabetic Effect of a Black Mangrove Species Aegiceras Corniculatum in Alloxan-Induced Diabetic Rats. J. Adv. Pharm. Technol. Res. 2012, 3, 52.
  • 11.
    Sopalun, K.; Strobel, G.A.; Hess, W.M.; et al. A Record of Muscodor albus, an Endophyte from Myristica fragrans in Thailand. Mycotaxon 2003, 88, 239–247.
  • 12.
    Wei, J.C. Handbook of Fungal Identification; Shanghai Scientific and Technical Publishers: Shanghai, China, 1979; pp. 1–802.
  • 13.
    Lin, Z.-J.; Lu, Z.-Y.; Zhu, T.-J.; et al. Penicillenols from Penicillium sp. GQ-7, an Endophytic Fungus Associated with Aegiceras Corniculatum. Chem. Pharm. Bull. 2008, 56, 217–221.
  • 14.
    Pharamat, T.; Palaga, T.; Piapukiew, J.; Whalley, A.J.S.; Sihanonth, P. Antimicrobial and Anticancer Activities of Endophytic Fungi from Mitrajyna Javanica Koord and Val. Afr. J. Microbiol. Res. 2013, 7, 5565–5572.
  • 15.
    Cui, J.-L.; Guo, T.-T.; Ren, Z.-X.; et al. Diversity and Antioxidant Activity of Culturable Endophytic Fungi from Alpine Plants of Rhodiola Crenulata, R. Angusta, and R. Sachalinensis. PLoS ONE 2015, 10, e0118204.
  • 16.
    Anesini, C.; Ferraro, G.E.; Filip, R. Total Polyphenol Content and Antioxidant Capacity of Commercially Available Tea (Camellia sinensis) in Argentina. J. Agric. Food Chem. 2008, 56, 9225–9229.
  • 17.
    Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant Activity, Total Phenolic and Total Flavonoid Contents of Whole Plant Extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221.
  • 18.
    Amorim, E.L.C.; Nascimento, J.E.; Monteiro, J.M.; et al. A Simple and Accurate Procedure for the Determination of Tannin and Flavonoid Levels and Some Applications in Ethnobotany and Ethnopharmacology. Funct. Ecosyst. Communities 2008, 2, 88–94.
  • 19.
    Rivera-Chávez, J.; Figueroa, M.; del Carmen González, M.; et al. α-Glucosidase Inhibitors from a Xylaria feejeensis Associated with Hintonia latiflora. J. Nat. Prod. 2015, 78, 730–735.
  • 20.
    You, Q.; Chen, F.; Wang, X.; et al. Inhibitory Effects of Muscadine Anthocyanins on α-Glucosidase and Pancreatic Lipase Activities. J. Agric. Food Chem. 2011, 59, 9506–9511.
  • 21.
    Masoko, P.; Picard, J.; Eloff, J.N. The Antifungal Activity of Twenty-Four Southern African Combretum Species (Combretaceae). S. Afr. J. Bot. 2007, 73, 173–183.
  • 22.
    Sun, J.-F.; Lin, X.; Zhou, X.-F.; et al. Pestalols A–E, New Alkenyl Phenol and Benzaldehyde Derivatives from Endophytic Fungus Pestalotiopsis sp. AcBC2 Isolated from the Chinese Mangrove Plant Aegiceras corniculatum. J. Antibiot.2014, 67, 451–457.
  • 23.
    Noshin, S.; Bairagi, R.D.; Airin, S.; et al. Synergistic Bioactivity of Aegiceras corniculatum (L.) Blanco and Its Endophytic Fungus Aspergillus: Antioxidant, Antimicrobial, and Cytotoxic Effects. Cell Biochem. Biophys. 2024, 1–10.
  • 24.
    Taware, A.S.; Chauhan, R.P.; Rajurkar, S.K. Screening of Secondary Metabolites from Endophytic Fungi of Albizia lebbeck from Various Regions of Aurangabad, Maharashtra (India). Adv. Life Sci. Hum. Welf. 2017, 27–32.
  • 25.
    da Silva, M.H.R.; Cueva-Yesquén, L.G.; Júnior, S.B.; et al. Endophytic Fungi from Passiflora Incarnata: An Antioxidant Compound Source. Arch. Microbiol. 2020, 202, 2779–2789.
  • 26.
    Scioli, G.; Marinaccio, L.; Bauer, M.; et al. New Teixobactin Analogues with a Total Lactam Ring. ACS Med. Chem. Lett. 2023, 14, 1827–1832.
  • 27.
    Singh, R.; Dubey, A.K. Endophytic Actinomycetes as Emerging Source for Therapeutic Compounds. Indo Glob. J. Pharm. Sci. 2015, 5, 106–116.
Share this article:
How to Cite
Noshin, S.; Bairagi, R. D.; Airin, S.; Debnath, D.; Mahmud, A.-S.; Rahaman, Md. S.; Acharzo, A. K.; Reon, R. R.; Islam, Md. A. In Vitro Activity of Isolated Bioactive Metabolites from Endophytic Fungus Associated with Aegiceras corniculatum. Journal of Medicinal Natural Products 2025, 2 (1), 100003. https://doi.org/10.53941/jmnp.2025.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.